

Praise for Head First JavaScript Programming

“Warning: Do not read Head First JavaScript Programming unless you want to learn the
fundamentals of programming with JavaScript in an entertaining and meaningful fashion.
There may be an additional side effect that you may actually recall more about JavaScript than
after reading typical technical books.”

 — Jesse Palmer, Senior Software Developer, Gannett Digital

“If every elementary and middle school student studied Elisabeth and Eric’s Head First HTML
and CSS, and if Head First JavaScript Programming and Head First HTML5 Programming were part of
the high school math and science curriculum, then our country would never lose its competitive
edge.”

 — Michael Murphy, senior systems consultant, The History Tree

“The Head First series utilizes elements of modern learning theory, including constructivism, to
bring readers up to speed quickly. The authors have proven with this book that expert-level content
can be taught quickly and efficiently. Make no mistake here, this is a serious JavaScript book, and
yet, fun reading!”

 — Frank Moore, Web designer and developer

“Looking for a book that will keep you interested (and laughing) but teach you some serious
programming skills? Head First JavaScript Programming is it!”

 — Tim Williams, software entrepreneur

“Add this book to your library regardless of your programming skill level!”

 — Chris Fuselier, engineering consultant

“Robson and Freeman have done it again! Using the same fun and information-packed style
as their previous books in the Head First series, Head First JavaScript Programming leads you
through entertaining and useful projects that, chapter-by-chapter, allow programmers—even
nonspecialists like myself—to develop a solid foundation in modern JavaScript programming
that we can use to solve real problems.”

 — Russell Alleen-Willems, digital archeologist, DiachronicDesign.com

“Freeman and Robson continue to use innovative teaching methods for communicating complex
concepts to basic principles.”

 — Mark Arana, Strategy & Innovation, The Walt Disney Studios

Praise for other books by Eric T. Freeman and Elisabeth Robson

“Just the right tone for the geeked-out, casual-cool guru coder in all of us. The right reference for
practical development strategies—gets my brain going without having to slog through a bunch of tired,
stale professor-speak.”

 — Travis Kalanick, CEO Uber

“This book’s admirable clarity, humor and substantial doses of clever make it the sort of book that helps
even non-programmers think well about problem-solving.”

 — Cory Doctorow, co-editor of Boing Boing, Science Fiction author

“I feel like a thousand pounds of books have just been lifted off of my head.”

 — Ward Cunningham, inventor of the Wiki

“One of the very few software books I’ve ever read that strikes me as indispensable. (I’d put maybe 10
books in this category, at the outside.)”

 — David Gelernter, Professor of Computer Science, Yale University

“I laughed, I cried, it moved me.”

 — Daniel Steinberg, Editor-in-Chief, java.net

“I can think of no better tour guides than Eric and Elisabeth.”

 — Miko Matsumura, VP of Marketing and Developer Relations at Hazelcast
 Former Chief Java Evangelist, Sun Microsystems

“I literally love this book. In fact, I kissed this book in front of my wife.”

 — Satish Kumar

“The highly graphic and incremental approach precisely mimics the best way to learn this stuff...”

 — Danny Goodman, author of Dynamic HTML: The Definitive Guide

“Eric and Elisabeth clearly know their stuff. As the Internet becomes more complex, inspired construction
of web pages becomes increasingly critical. Elegant design is at the core of every chapter here, each
concept conveyed with equal doses of pragmatism and wit.”

 — Ken Goldstein, former CEO of Shop.com and author of
 This is Rage: A Novel of Silicon Valley and Other Madness

Make it Stick

Other related books from O’Reilly

Head First HTML5 Programming

JavaScript: The Definitive Guide

JavaScript Enlightenment

Other O’Reilly books by Eric T. Freeman and Elisabeth Robson

Head First Design Patterns

Head First HTML and CSS

Head First HTML5 Programming

Other books in O’Reilly’s Head First series

Head First HTML and CSS

Head First HTML5 Programming

Head First Design Patterns

Head First Servlets and JSP

Head First SQL

Head First Software Development

Head First C#

Head First Java

Head First Object-Oriented Analysis and Design (OOA&D)

Head First Ajax

Head First Rails

Head First PHP & MySQL

Head First Web Design

Head First Networking

Head First iPhone and iPad Development

Head First jQuery

Beijing • Cambridge • K�ln • Sebastopol • Tokyo

Eric T. Freeman
Elisabeth Robson

Head First
JavaScript

Programming

Wouldn’t it be dreamy if there was
a JavaScript book that was more
fun than going to the dentist and
more revealing than an IRS form?
It’s probably just a fantasy...

Head First JavaScript Programming

by Eric T. Freeman and Elisabeth Robson

Copyright © 2014 Eric Freeman, Elisabeth Robson. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Meghan Blanchette, Courtney Nash

Cover Designer: Randy Comer

Code Monkeys: Eric T. Freeman, Elisabeth Robson

Production Editor: Melanie Yarbrough

Indexer: Potomac Indexing

Proofreader: Rachel Monaghan

Page Viewer: Oliver

Printing History:

March 2014: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. The Head First series designations, Head First JavaScript Programming, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

In other words, if you use anything in Head First JavaScript Programming to, say, run a nuclear power plant, you’re
on your own. We do, however, encourage you to visit Webville.

No variables were harmed in the making of this book.

ISBN: 978-1-449-34013-1
[LSI] [8/14]

To JavaScript—you weren’t born with a silver spoon in
your mouth, but you’ve outclassed every language that’s
challenged you in the browser.

viii

the authors

Authors of Head First JavaScript Programming

Elisabeth is a software engineer, writer, and trainer.
She has been passionate about technology since her
days as a student at Yale University, where she earned a
Masters of Science in Computer Science and designed
a concurrent, visual programming language and
software architecture.

Elisabeth’s been involved with the Internet since the
early days; she co-created the award-winning Web site,
The Ada Project, one of the first Web sites designed
to help women in computer science find career and
mentorship information online.

She’s currently co-founder of WickedlySmart, an online
education experience centered on web technologies,
where she creates books, articles, videos and more.
Previously, as Director of Special Projects at O’Reilly
Media, Elisabeth produced in-person workshops and
online courses on a variety of technical topics and
developed her passion for creating learning experiences
to help people understand technology. Prior to her work
with O’Reilly, Elisabeth spent time spreading fairy dust
at The Walt Disney Company, where she led research
and development efforts in digital media.

When not in front of her computer, you’ll find Elisabeth
hiking, cycling or kayaking in the great outdoors, with
her camera nearby, or cooking vegetarian meals.

You can send her email at beth@wickedlysmart.com
or visit her blog at http://elisabethrobson.com.

Eric Freeman

Eric is described by Head First series co-creator Kathy
Sierra as “one of those rare individuals fluent in the language,
practice, and culture of multiple domains from hipster
hacker, corporate VP, engineer, think tank.”

Professionally, Eric recently ended nearly a decade as a media
company executive—having held the position of CTO of
Disney Online & Disney.com at The Walt Disney Company.
Eric is now devoting his time to WickedlySmart, a startup he
co-created with Elisabeth.

By training, Eric is a computer scientist, having studied with
industry luminary David Gelernter during his Ph.D. work
at Yale University. His dissertation is credited as the seminal
work in alternatives to the desktop metaphor, and also as the
first implementation of activity streams, a concept he and Dr.
Gelernter developed.

In his spare time, Eric is deeply involved with music; you’ll
find Eric’s latest project, a collaboration with ambient music
pioneer Steve Roach, available on the iPhone app store
under the name Immersion Station.

Eric lives with his wife and young daughter in Austin, Texas.
His daughter is a frequent vistor to Eric’s studio, where she
loves to turn the knobs of his synths and audio effects.

Write to Eric at eric@wickedlysmart.com or visit his site
at http://ericfreeman.com.

Elisabeth Robson

ix

Intro
Your brain on JavaScript. Here you are trying to learn something, while here

your brain is doing you a favor by making sure the learning doesn’t stick. Your brain’s

thinking, “Better leave room for more important things, like which wild animals to avoid

and whether naked snowboarding is a bad idea.” So how do you trick your brain into

thinking that your life depends on knowing JavaScript programming?

Table of Contents (summary)
 Intro xxv

1 A quick dip into JavaScript: Getting your feet wet 1

2 Writing real code: Going further 43

3 Introducing functions: Getting functional 79

4 Putting some order in your data: Arrays 125

5 Understanding objects: A trip to Objectville 173

6 Interacting with your web page: Getting to know the DOM 229

7 Types, equality, conversion, and all that jazz: Serious types 265

8 Bringing it all together: Building an app 317

9 Asynchronous coding: Handling events 381

10 First-class functions: Liberated functions 429

11 Anonymous functions, scope, and closures: Serious functions 475

12 Advanced object construction: Creating objects 521

13 Using prototypes: Extra-strength objects 563

Appendix: The Top Ten Topics (we didn’t cover): Leftovers 623

Table of Contents (the real thing)

table of contents

Who is this book for ? xxvi

We know what you’re thinking. xxvii

We think of a “Head First” reader as a learner. xxviii

Metacognition: thinking about thinking xxix

Here’s what WE did: xxx

Here’s what YOU can do to bend your brain into submission xxxi

Read Me xxxii

Tech Reviewers xxxv

Acknowledgments* xxxvi

x

1 Getting your feet wet

a quick dip into javascript

JavaScript gives you superpowers. The true programming

language of the web, JavaScript lets you add behavior to your web pages. No

more dry, boring, static pages that just sit there looking at you—with JavaScript

you’re going to be able to reach out and touch your users, react to interesting

events, grab data from the web to use in your pages, draw graphics right in your

web pages and a lot more. And once you know JavaScript you’ll also be in a

position to create totally new behaviors for your users.

The way JavaScript works 2

How you’re going to write JavaScript 3

How to get JavaScript into your page 4

JavaScript, you’ve come a long way baby... 6

How to make a statement 10

Variables and values 11

Back away from that keyboard! 12

Express yourself 15

Doing things more than once 17

How the while loop works 18

Making decisions with JavaScript 22

And, when you need to make LOTS of decisions 23

Reach out and communicate with your user 25

A closer look at console.log 27

Opening the console 28

Coding a Serious JavaScript Application 29

How do I add code to my page? (let me count the ways) 32

We’re going to have to separate you two 33

table of contents

HTML CSS

JS

Browser

You’ve got a lot of flexibility in choosing your variable names, so here are a few Webville tips to make your naming easier:
Choose names that mean something. Variable names like _m, $, r and foo might mean something to you but they are generally frowned upon in Webville. Not only are you likely to forget them over time, your code will be much more readable with names like angle, currentPressure and passedExam.

Use “camel case” when creating multiword variable names. At some point you’re going to have to decide how you name a variable that represents, say, a two-headed dragon with fire. How? Just use camel case, in which you capitalize the first letter of each word (other than the first): twoHeadedDragonWithFire. Camel case is easy to form, widely spoken in Webville and gives you enough flexibility to create as specific a variable name as you need. There are other schemes too, but this is one of the more commonly used (even beyond JavaScript).
Use variables that begin with _ and $

only with very good reason.
Variables that begin with $ are usually reserved for JavaScript libraries and while some authors use variables beginning with _ for various conventions, we recommend you stay away from both unless you have very good reason (you’ll know if you do).Be safe.

Be safe in your variable naming; we’ll cover a few more tips for staying safe later in the book, but for now be clear in your naming, avoid keywords, and always use var when declaring a variable.

WEBVILLE T I M E SHow to avoid those embarassing naming mistakes

xi

2 Going further

writing real code

You already know about variables, types, expressions...
we could go on. The point is, you already know a few things about

JavaScript. In fact, you know enough to write some real code. Some code that

does something interesting, some code that someone would want to use. What

you’re lacking is the real experience of writing code, and we’re going to remedy

that right here and now. How? By jumping in head first and coding up a casual

game, all written in JavaScript. Our goal is ambitious but we’re going to take it

one step at a time. Come on, let’s get this started, and if you want to launch the

next casual startup, we won’t stand in your way; the code is yours.

Let’s build a Battleship game 44

Our first attempt... 44

First, a high-level design 45

Working through the Pseudocode 47

Oh, before we go any further, don’t forget the HTML! 49

Writing the Simple Battleship code 50

Now let’s write the game logic 51

Step One: setting up the loop, getting some input 52

How prompt works 53

Checking the user’s guess 54

So, do we have a hit? 56

Adding the hit detection code 57

Provide some post-game analysis 58

And that completes the logic! 60

Doing a little Quality Assurance 61

Can we talk about your verbosity... 65

Finishing the Simple Battleship game 66

How to assign random locations 67

The world-famous recipe for generating a random number 67

Back to do a little more QA 69

Congrats on your first true JavaScript program,
and a short word about reusing code 71

table of contents

Start

Game set-up

Get user
guess

Check
guess

hitmiss Mark ship as
hit

sunk

Mark ship
as sunk

Display user
score/rating

Game
over

xii

3 Getting functional

introducing functions

Get ready for your first superpower. You’ve got some programming under

your belt; now it’s time to really move things along with functions. Functions give you the

power to write code that can be applied to all sorts of different circumstances, code that

can be reused over and over, code that is much more manageable, code that can be

abstracted away and given a simple name so you can forget all the complexity and get

on with the important stuff. You’re going to find not only that functions are your gateway

from scripter to programmer, they’re the key to the JavaScript programming style. In

this chapter we’re going to start with the basics: the mechanics, the ins and outs of how

functions really work, and then you’ll keep honing your function skills throughout the rest

of the book. So, let’s get a good foundation started, now.

What’s wrong with the code anyway? 81

By the way, did we happen to mention FUNCTIONS? 83

Okay, but how does it actually work? 84

What can you pass to a function? 89

JavaScript is pass-by-value. 92

Weird Functions 94

Functions can return things too 95

Tracing through a function with a return statement 96

Global and local variables 99

Knowing the scope of your local and global variables 101

The short lives of variables 102

Don’t forget to declare your locals! 103

table of contents

xiii

4 Arrays

putting some order in your data

There’s more to JavaScript than numbers, strings and
booleans. So far you’ve been writing JavaScript code with primitives—simple

strings, numbers and booleans, like “Fido”, 23, and true. And you can do a lot with

primitive types, but at some point you’ve got to deal with more data. Say, all the items

in a shopping cart, or all the songs in a playlist, or a set of stars and their apparent

magnitude, or an entire product catalog. For that we need a little more ummph. The

type of choice for this kind of ordered data is a JavaScript array, and in this chapter

we’re going to walk through how to put your data into an array, how to pass it around

and how to operate on it. We’ll be looking at a few other ways to structure your data

in later chapters but let’s get started with arrays.

Can you help Bubbles-R-Us? 126

How to represent multiple values in JavaScript 127

How arrays work 128

How big is that array anyway? 130

The Phrase-O-Matic 132

Meanwhile, back at Bubbles-R-Us... 135

How to iterate over an array 138

But wait, there’s a better way to iterate over an array 140

Can we talk about your verbosity? 146

Redoing the for loop with the post-increment operator 147

Quick test drive 147

Creating an array from scratch (and adding to it) 151

And the winners are... 155

A quick survey of the code... 157

Writing the printAndGetHighScore function 158

Refactoring the code using printAndGetHighScore 159

Putting it all together... 161

table of contents

60 50 60 58 54 54 58 50 52 54

0 1 2 3 4 5 6 7 8 9

xiv

5 A trip to Objectville

undestanding objects

So far you’ve been using primitives and arrays in your
code. And, you’ve approached coding in quite a procedural manner using simple

statements, conditionals and for/while loops with functions—that’s not exactly object-

oriented. In fact, it’s not object-oriented at all! We did use a few objects here and

there without really knowing it, but you haven’t written any of your own objects yet.

Well, the time has come to leave this boring procedural town behind to create some

objects of your own. In this chapter, you’re going to find out why using objects is

going to make your life so much better—well, better in a programming sense (we

can’t really help you with your fashion sense and your JavaScript skills all in one

book). Just a warning: once you’ve discovered objects you’ll never want to come back.

Send us a postcard when you get there.

Did someone say “Objects”?! 174

Thinking about properties... 175

How to create an object 177

What is Object-Oriented Anyway? 180

How properties work 181

How does a variable hold an object? Inquiring minds want to know... 186

Comparing primitives and objects 187

Doing even more with objects... 188

Stepping through pre-qualification 190

Let’s talk a little more about passing objects to functions 192

Oh Behave! Or, how to add behavior to your objects 198

Improving the drive method 199

Why doesn’t the drive method know about the started property? 202

How this works 204

How behavior affects state... Adding some Gas-o-line 210

Now let’s affect the behavior with the state 211

Congrats on your first objects! 213

Guess what? There are objects all around you!
(and they’ll make your life easier) 214

table of contents

xv

Did someone say “Objects”?! 174

Thinking about properties... 175

How to create an object 177

What is Object-Oriented Anyway? 180

How properties work 181

How does a variable hold an object? Inquiring minds want to know... 186

Comparing primitives and objects 187

Doing even more with objects... 188

Stepping through pre-qualification 190

Let’s talk a little more about passing objects to functions 192

Oh Behave! Or, how to add behavior to your objects 198

Improving the drive method 199

Why doesn’t the drive method know about the started property? 202

How this works 204

How behavior affects state... Adding some Gas-o-line 210

Now let’s affect the behavior with the state 211

Congrats on your first objects! 213

Guess what? There are objects all around you!
(and they’ll make your life easier) 214

6 Getting to know the DOM

interacting with your web page

You’ve come a long way with JavaScript. In fact you’ve evolved from a newbie to

a scripter to, well, a programmer. But, there’s something missing. To really begin leveraging your

JavaScript skills you need to know how to interact with the web page your code lives in. Only by doing

that are you going to be able to write pages that are dynamic, pages that react, that respond, that

update themselves after they’ve been loaded. So how do you interact with the page? By using the DOM,

otherwise known as the document object model. In this chapter we’re going to break down the DOM

and see just how we can use it, along with JavaScript, to teach your page a few new tricks.

The “crack the code challenge.” 230

So what does the code do? 231

How JavaScript really interacts with your page 233

How to bake your very own DOM 234

A first taste of the DOM 235

Getting an element with getElementById 240

What, exactly, am I getting from the DOM? 241

Finding your inner HTML 242

What happens when you change the DOM 244

A test drive around the planets 247

Don’t even think about running my code until the page
is fully loaded! 249

You say “event hander,” I say “callback” 250

How to set an attribute with setAttribute 255

More fun with attributes!
(you can GET attributes too) 256

Don’t forget getElementById can return null too! 256

Any time you ask for something, you need to make sure
you got back what you expected... 256

So what else is a DOM good for anyway? 258

table of contents

Browser here, I’m
reading the page and
creating a DOM of it.

body

p id =”greenplanet” p id =”redplanet” p id =”blueplanet”

All is
well

Nothing to
report

All systems
A-OK

head

html

document

xvi

7 Serious types

types, equality, conversion, and all that jazz

It’s time to get serious about our types. One of the great things about

JavaScript is you can get a long way without knowing a lot of details of the language.

But to truly master the language, get that promotion and get on to the things you really

want to do in life, you have to rock at types. Remember what we said way back about

JavaScript? That it didn’t have the luxury of a silver-spoon, academic, peer-reviewed

language definition? Well that’s true, but the academic life didn’t stop Steve Jobs and

Bill Gates, and it didn’t stop JavaScript either. It does mean that JavaScript doesn’t have

the… well, the most thought-out type system, and we’ll find a few idiosyncrasies along

the way. But, don’t worry, in this chapter we’re going to nail all that down, and soon you’ll

be able to avoid all those embarrassing moments with types.

The truth is out there... 266

Watch out, you might bump into undefined
when you aren’t expecting it... 268

How to use null 271

Dealing with NaN 273

It gets even weirder 273

We have a confession to make 275

Understanding the equality operator (otherwise known as ==) 276

How equality converts its operands
(sounds more dangerous than it actually is) 277

How to get strict with equality 280

Even more type conversions... 286

How to determine if two objects are equal 289

The truthy is out there... 291

What JavaScript considers falsey 292

The Secret Life of Strings 294

How a string can look like a primitive and an object 295

A five-minute tour of string methods (and properties) 297

Chair Wars 301

table of contents

xvii

8 Building an app

bringing it all together

Put on your toolbelt. That is, the toolbelt with all your new coding skills, your

knowledge of the DOM, and even some HTML & CSS. We’re going to bring everything

together in this chapter to create our first true web application. No more silly toy

games with one battleship and a single row of hiding places. In this chapter we’re

building the entire experience: a nice big game board, multiple ships and user input

right in the web page. We’re going to create the page structure for the game with HTML,

visually style the game with CSS, and write JavaScript to code the game’s behavior. Get

ready: this is an all out, pedal to the metal development chapter where we’re going to lay

down some serious code.

This time, let’s build a REAL Battleship game 318

Stepping back... to HTML and CSS 319

Creating the HTML page: the Big Picture 320

Adding some more style 324

Using the hit and miss classes 327

How to design the game 329

Implementing the View 331

How displayMessage works 331

How displayHit and displayMiss work 333

The Model 336

How we’re going to represent the ships 338

Implementing the model object 341

Setting up the fire method 342

Implementing the Controller 349

Processing the player’s guess 350

Planning the code... 351

Implementing parseGuess 352

Counting guesses and firing the shot 355

How to add an event handler to the Fire! button 359

Passing the input to the controller 360

How to place ships 364

Writing the generateShip method 365

Generate the starting location for the new ship 366

Completing the generateShip method 367

table of contents

A

B

C

D

E

F

G

0 1 2 3 4 5 6

Ship3

Ship2

Sh
ip

1

HIT

xviii

9 Handling events

asynchronous coding

After this chapter you’re going to realize you aren’t in
Kansas anymore. Up until now, you’ve been writing code that typically

executes from top to bottom—sure, your code might be a little more complex than

that, and make use of a few functions, objects and methods, but at some point the

code just runs its course. Now, we’re awfully sorry to break this to you this late in

the book, but that’s not how you typically write JavaScript code. Rather, most

JavaScript is written to react to events. What kind of events? Well, how about a user

clicking on your page, data arriving from the network, timers expiring in the browser,

changes happening in the DOM and that’s just a few examples. In fact, all kinds

of events are happening all the time, behind the scenes, in your browser. In this

chapter we’re going rethink our approach to JavaScript coding, and learn how and

why we should write code that reacts to events.

What are events? 383

What’s an event handler? 384

How to create your first event handler 385

Test drive your event 386

Getting your head around events... by creating a game 388

Implementing the game 389

Test drive 390

Let’s add some more images 394

Now we need to assign the same event handler
to each image’s onclick property 395

How to reuse the same handler for all the images 396

How the event object works 399

Putting the event object to work 401

Test drive the event object and target 402

Events and queues 404

Even more events 407

How setTimeout works 408

Finishing the image game 412

Test driving the timer 413

table of contents

xix

10 Liberated functions

first class functions

Know functions, then rock. Every art, craft, and discipline has a key principle that

separates the intermediate players from the rock star virtuosos—when it comes to JavaScript, it’s truly

understanding functions that makes the difference. Functions are fundamental to JavaScript, and

many of the techniques we use to design and organize code depend on advanced knowledge and

use of functions. The path to learning functions at this level is an interesting and often mind-bending

one, so get ready... This chapter is going to be a bit like Willy Wonka giving a tour of the chocolate

factory—you’re going to encounter some wild, wacky and wonderful things as you learn more about

JavaScript functions.
The mysterious double life of the function keyword 430

Function declarations versus function expressions 431

Parsing the function declaration 432

What’s next? The browser executes the code 433

Moving on... The conditional 434

How functions are values too 439

Did we mention functions have
First Class status in JavaScript? 442

Flying First Class 443

Writing code to process and check passengers 444

Iterating through the passengers 446

Passing a function to a function 447

Returning functions from functions 450

Writing the flight attendant drink order code 451

The flight attendant drink order code: a different approach 452

Taking orders with first class functions 454

Webville Cola 457

How the array sort method works 459

Putting it all together 460

Take sorting for a test drive 462

table of contents

xx

11 Serious functions

anonymous functions, scopes, and closures

You’ve put functions through their paces, but there’s more to learn.
In this chapter we take it further; we get hard-core. We’re going to show you how to really handle

functions. This won’t be a super long chapter, but it will be intense, and at the end you’re going to

be more expressive with your JavaScript than you thought possible. You’re also going to be ready to

take on a coworker’s code, or jump into an open source JavasScript library, because we’re going to

cover some common coding idioms and conventions around functions. And if you’ve never heard of an

anonymous function or a closure, boy are you in the right place.

Taking a look at the other side of functions... 476

How to use an anonymous function 477

We need to talk about your verbosity, again 479

When is a function defined? It depends... 483

What just happened? Why wasn’t fly defined? 484

How to nest functions 485

How nesting affects scope 486

A little review of lexical scope 488

Where things get interesting with lexical scope 489

Functions Revisited 491

Calling a function (revisited) 492

What the heck is a closure? 495

Closing a function 496

Using closures to implement a magic counter 498

Looking behind the curtain... 499

Creating a closure by passing a function expression as an argument 501

The closure contains the actual environment, not a copy 502

Creating a closure with an event handler 503

How the Click me! closure works 506

table of contents

Wait a sec... what
is this closure thing? It
looks related to what
we’re doing. Maybe we can
get a leg up on her yet.

Darn it! Judy
was right again.

xxi

12 Creating objects

advanced object construction

So far we’ve been crafting objects by hand. For each object,

we’ve used an object literal to specify each and every property. That’s okay on a

small scale, but for serious code we need something better. That’s where object

constructors come in. With constructors we can create objects much more easily,

and we can create objects that all adhere to the same design blueprint—meaning

we can use constructors to ensure each object has the same properties and includes

the same methods. And with constructors we can write object code that is much

more concise and a lot less error prone when we’re creating lots of objects. So, let’s

get started and after this chapter you’ll be talking constructors just like you grew up in

Objectville.

Creating objects with object literals 522

Using conventions for objects 523

Introducing Object Constructors 525

How to create a Constructor 526

How to use a Constructor 527

How constructors work 528

You can put methods into constructors as well 530

It’s Production Time! 536

Let’s test drive some new cars 538

Don’t count out object literals just yet 539

Rewiring the arguments as an object literal 540

Reworking the Car constructor 541

Understanding Object Instances 543

Even constructed objects can have their own independent properties 546

Real World Constructors 548

The Array object 549

Even more fun with built-in objects 551

table of contents

xxii

13 Extra strength objects

using prototypes

Learning how to create objects was just the beginning. It’s

time to put some muscle on our objects. We need more ways to create relationships

between objects and to share code among them. And, we need ways to extend

and enhance existing objects. In other words, we need more tools. In this chapter,

you’re going to see that JavaScript has a very powerful object model, but one that

is a bit different than the status quo object-oriented language. Rather than the typical

class-based object-oriented system, JavaScript instead opts for a more powerful

prototype model, where objects can inherit and extend the behavior of other objects.

What is that good for? You’ll see soon enough. Let’s get started...

Hey, before we get started, we’ve got a better way to diagram our objects 565

Revisiting object constructors: we’re reusing code, but are we being efficient? 566

Is duplicating methods really a problem? 568

What are prototypes? 569

Inheriting from a prototype 570

How inheritance works 571

Overriding the prototype 573

How to set up the prototype 576

Prototypes are dynamic 582

A more interesting implementation of the sit method 584

One more time: how the sitting property works 585

How to approach the design of the show dogs 589

Setting up a chain of prototypes 591

How inheritance works in a prototype chain 592

Creating the show dog prototype 594

Creating a show dog Instance 598

A final cleanup of show dogs 602

Stepping through Dog.call 604

The chain doesn’t end at dog 607

Using inheritance to your advantage...by overriding built-in behavior 608

Using inheritance to your advantage...by extending a built-in object 610

Grand Unified Theory of Everything 612

Better living through objects 612

Putting it all together 613

What’s next? 613

table of contents

Object

toString()
hasOwnProperty()
// and more

species: "Canine"

Dog Prototype

bark()
run()
wag()

name: “Scotty”
breed: “Scottish Terrier”

weight: 15
handler: “Cookie”

ShowDog

league: “Webville”

ShowDog Prototype

stack()
bait()
gait()
groom()

xxiii

14 The top ten topics (we didn’t cover)

Appendix: Leftovers

We’ve covered a lot of ground, and
you’re almost finished with this book.
We’ll miss you, but before we let you go, we wouldn’t

feel right about sending you out into the world without a

little more preparation. We can’t possibly fit everything

you’ll need to know into this relatively small chapter.

Actually, we did originally include everything you need

to know about JavaScript Programming (not already

covered by the other chapters), by reducing the type

point size to .00004. It all fit, but nobody could read it.

So we threw most of it away, and kept the best bits for

this Top Ten appendix.This really is the end of the book.

Except for the index, of course (a must-read!).

#1 jQuery 624

#2 Doing more with the DOM 626

#3 The Window Object 627

#4 Arguments 628

#5 Handling exceptions 629

#6 Adding event handlers with addEventListener 630

#7 Regular Expressions 632

#8 Recursion 634

#9 JSON 636

#10 Server-side JavaScript 637

table of contents

i Index 641

xxv

Intro
how to use this book

I can’t believe
they put that in a
JavaScript book!

In this section, we answer the burning questi
on:

“So, why DID they put that in a J
avaScript book?”

how to use this book

xxvi intro

Who is this book for ?

1 Do you have access to a computer with a modern web
browser and a text editor?

2 Do you want to learn, understand and remember how
to program with JavaScript using the best techniques
and the most recent standards?

this book is for you.

Who should probably back away from this book?

1 Are you completely new to web development?

Are HTML and CSS foreign concepts to you? If so,
you’ll probably want to start with Head First HTML
and CSS to understand how to put web pages
together before tackling JavaScript.

3

this book is not for you.

Are you afraid to try something different? Would you
rather have a root canal than mix stripes with plaid?
Do you believe that a technical book can’t be serious if
JavaScript objects are anthropomorphized?

If you can answer “yes” to all of these:

If you can answer “yes” to any one of these:

2 Are you a kick-butt web developer looking for a
reference book?

[Note from marketing: this book is
for anyone with a credit card.]

3 Do you prefer stimulating dinner party conversation
to dry, dull, academic lectures?

We consider an updated version of Safari, Chrome, Firefox or IE version 9 or newer to be modern.

the intro

you are here� xxvii

“How can this be a serious book?”

“What’s with all the graphics?”

“Can I actually learn it this way?”

We know what you’re thinking.

Your brain craves novelty. It’s always searching, scanning, waiting for
something unusual. It was built that way, and it helps you stay alive.

Today, you’re less likely to be a tiger snack. But your brain’s still looking.
You just never know.

So what does your brain do with all the routine, ordinary, normal things
you encounter? Everything it can to stop them from interfering with the
brain’s real job—recording things that matter. It doesn’t bother saving the
boring things; they never make it past the “this is obviously not important”
filter.

How does your brain know what’s important? Suppose you’re out for a day
hike and a tiger jumps in front of you. What happens inside your head
and body?

Neurons fire. Emotions crank up. Chemicals surge.

And that’s how your brain knows…

This must be important! Don’t forget it!

But imagine you’re at home, or in a library. It’s a safe, warm, tiger-
free zone. You’re studying. Getting ready for an exam. Or trying to
learn some tough technical topic your boss thinks will take a week,
ten days at the most.

Just one problem. Your brain’s trying to do you a big favor. It’s
trying to make sure that this obviously non-important content doesn’t
clutter up scarce resources. Resources that are better spent storing
the really big things. Like tigers. Like the danger of fire. Like how
you should never again snowboard in shorts.

And there’s no simple way to tell your brain, “Hey brain, thank
you very much, but no matter how dull this book is, and how little
I’m registering on the emotional Richter scale right now, I really do
want you to keep this stuff around.”

And we know what your brain is thinking.

Your brain thinks THIS is important.

Your brain t
hinks

THIS isn’t worth
saving.

Great. Only 661
more dull, dry,
boring pages.

how to use this book

xxviii intro

We think of a “Head First” reader as a learner.

I really think
JavaScript should go
in the <head> element.

Now that I have your
attention, you should be

more careful using global

variables.

So what does it take to learn something? First, you have to get it, then make

sure you don’t forget it. It’s not about pushing facts into your head. Based

on the latest research in cognitive science, neurobiology and educational

psychology, learning takes a lot more than text on a page. We know what

turns your brain on.

Some of the Head First learning principles:

Make it visual. Images are far more memorable than words

alone, and make learning much more effective (up to 89%

improvement in recall and transfer studies). It also makes things

more understandable. Put the words within or near the

graphics they relate to, rather than on the bottom or on another

page, and learners will be up to twice as likely to solve problems

related to the content.

Use a conversational and personalized style. In recent studies,

students performed up to 40% better on post-learning tests if the content

spoke directly to the reader, using a first-person, conversational style rather than

taking a formal tone. Tell stories instead of lecturing. Use casual language. Don’t

take yourself too seriously. Which would you pay more attention to: a

stimulating dinner party companion, or a lecture?

Get the learner to think more deeply. In other words,

unless you actively flex your neurons, nothing much happens in your

head. A reader has to be motivated, engaged, curious and inspired

to solve problems, draw conclusions and generate new

knowledge. And for that, you need challenges, exercises

and thought-provoking questions, and activities that

involve both sides of the brain and multiple senses.

Get—and keep—the reader’s attention. We’ve all

had the “I really want to learn this but I can’t stay awake past page one”

experience. Your brain pays attention to things that are out of the ordinary,

interesting, strange, eye-catching, unexpected. Learning a new, tough, technical topic doesn’t have

to be boring. Your brain will learn much more quickly if it’s not.

Touch their emotions. We now know that your ability to remember something is largely

dependent on its emotional content. You remember what you care about. You remember when

you feel something. No, we’re not talking heart-wrenching stories about a boy and his dog. We’re

talking emotions like surprise, curiosity, fun, “what the…?” , and the feeling of “I Rule!” that comes

when you solve a puzzle, learn something everybody else thinks is hard, or realize you know

something that “I’m more technical than thou” Bob from engineering doesn’t.

Unlike other languages, JavaScript is
delivered, as code, directly to your
browser. That’s different!

“Found the code, here ya go”Web Server

<html>

 <head>

 <title>

 My Playlist

 </title>

 <head>

 <body>

 <h1>Kick’n Tunes

 </h1>

 <p>BT - Satellite: nice
downbeat tune.
 </p>

 <p>

 ...

Not so fast! T
here are

performance and pag
e

loading implications!

the intro

you are here� xxix

If you really want to learn, and you want to learn more quickly and more deeply,
pay attention to how you pay attention. Think about how you think. Learn how you
learn.

Most of us did not take courses on metacognition or learning theory when we were
growing up. We were expected to learn, but rarely taught how to learn.

But we assume that if you’re holding this book, you really want to learn
how to create JavaScript programs. And you probably don’t want to
spend a lot of time. And you want to remember what you read, and be able
to apply it. And for that, you’ve got to understand it. To get the most from
this book, or any book or learning experience, take responsibility for your
brain. Your brain on this content.

The trick is to get your brain to see the new material you’re learning as
Really Important. Crucial to your well-being. As important as a tiger.
Otherwise, you’re in for a constant battle, with your brain doing its best
to keep the new content from sticking.

Metacognition: thinking about thinking

I wonder how I
can trick my brain
into remembering

this stuff...

So how DO you get your brain to think JavaScript is
as important as a tiger?

There’s the slow, tedious way, or the faster, more effective way. The
slow way is about sheer repetition. You obviously know that you are
able to learn and remember even the dullest of topics, if you keep pounding on the same
thing. With enough repetition, your brain says, “This doesn’t feel important to him, but he
keeps looking at the same thing over and over and over, so I suppose it must be.”

The faster way is to do anything that increases brain activity, especially different
types of brain activity. The things on the previous page are a big part of the solution,
and they’re all things that have been proven to help your brain work in your favor. For
example, studies show that putting words within the pictures they describe (as opposed to
somewhere else in the page, like a caption or in the body text) causes your brain to try
to make sense of how the words and picture relate, and this causes more neurons to fire.
More neurons firing = more chances for your brain to get that this is something worth
paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they
perceive that they’re in a conversation, since they’re expected to follow along and hold up
their end. The amazing thing is, your brain doesn’t necessarily care that the “conversation”
is between you and a book! On the other hand, if the writing style is formal and dry, your
brain perceives it the same way you experience being lectured to while sitting in a roomful
of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning.

xxx intro

how to use this book

We used pictures, because your brain is tuned for visuals, not text. As far as your brain’s
concerned, a picture really is worth 1024 words. And when text and pictures work together, we
embedded the text in the pictures because your brain works more effectively when the text is
within the thing the text refers to, as opposed to in a caption or buried in the text somewhere.

We used redundancy, saying the same thing in different ways and with different media types,
and multiple senses, to increase the chance that the content gets coded into more than one area of
your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for novelty,
and we used pictures and ideas with at least some emotional content, because your brain is
tuned to pay attention to the biochemistry of emotions. That which causes you to feel something
is more likely to be remembered, even if that feeling is nothing more than a little humor,
surprise or interest.

We used a personalized, conversational style, because your brain is tuned to pay more
attention when it believes you’re in a conversation than if it thinks you’re passively listening to a
presentation. Your brain does this even when you’re reading.

We included more than 100 activities, because your brain is tuned to learn and remember
more when you do things than when you read about things. And we made the exercises
challenging-yet-do-able, because that’s what most people prefer.

We used multiple learning styles, because you might prefer step-by-step procedures, while
someone else wants to understand the big picture first, while someone else just wants to see a
code example. But regardless of your own learning preference, everyone benefits from seeing the
same content represented in multiple ways.

We include content for both sides of your brain, because the more of your brain you
engage, the more likely you are to learn and remember, and the longer you can stay focused.
Since working one side of the brain often means giving the other side a chance to rest, you can
be more productive at learning for a longer period of time.

And we included stories and exercises that present more than one point of view, because
your brain is tuned to learn more deeply when it’s forced to make evaluations and judgements.

We included challenges, with exercises, and by asking questions that don’t always have
a straight answer, because your brain is tuned to learn and remember when it has to work at
something. Think about it—you can’t get your body in shape just by watching people at the gym.
But we did our best to make sure that when you’re working hard, it’s on the right things. That
you’re not spending one extra dendrite processing a hard-to-understand example, or
parsing difficult, jargon-laden or overly terse text.

We used people. In stories, examples, pictures, etc., because, well, you’re a person. And your
brain pays more attention to people than it does to things.

We used an 80/20 approach. We assume that if you’re going to be a kick-butt JavaScript
developer, this won’t be your only book. So we don’t talk about everything. Just the stuff you’ll
actually need.

Here’s what WE did:

 BULLET POINTS

Puzzles

Be the Browser

species: "Canine"

Dog Prototype

bark()
run()

wag()

name: “Scotty”
breed: “Scottish Terrier”

weight: 15
handler: “Cookie”

ShowDog

league: “Webville”

ShowDog Prototype

stack()
bait()

groom()
gait()

Thomas.Miholick
Highlight

the intro

you are here� xxxi

So, we did our part. The rest is up to you. These tips are a
starting point; listen to your brain and figure out what works
for you and what doesn’t. Try new things.

Here’s what YOU can do to bend
your brain into submission

1 Slow down. The more you understand,
the less you have to memorize.

Don’t just read. Stop and think. When the
book asks you a question, don’t just skip to the
answer. Imagine that someone really is asking
the question. The more deeply you force your
brain to think, the better chance you have of
learning and remembering.

2 Do the exercises. Write your own notes.

We put them in, but if we did them for you,
that would be like having someone else do
your workouts for you. And don’t just look at
the exercises. Use a pencil. There’s plenty of
evidence that physical activity while learning
can increase the learning.

3 Read the “There are No Dumb Questions”

That means all of them. They’re not optional
sidebars—they’re part of the core content!
Don’t skip them.

4 Make this the last thing you read before
bed. Or at least the last challenging thing.

Part of the learning (especially the transfer to
long-term memory) happens after you put the
book down. Your brain needs time on its own, to
do more processing. If you put in something new
during that processing-time, some of what you
just learned will be lost.

5 Drink water. Lots of it.

Your brain works best in a nice bath of fluid.
Dehydration (which can happen before you ever
feel thirsty) decreases cognitive function.

6 Talk about it. Out loud.

Speaking activates a different part of the brain.
If you’re trying to understand something, or
increase your chance of remembering it later, say
it out loud. Better still, try to explain it out loud
to someone else. You’ll learn more quickly, and
you might uncover ideas you hadn’t known were
there when you were reading about it.

7 Listen to your brain.

Pay attention to whether your brain is getting
overloaded. If you find yourself starting to skim the
surface or forget what you just read, it’s time for a
break. Once you go past a certain point, you won’t
learn faster by trying to shove more in, and you
might even hurt the process.

9 Create something!

Apply this to something new you’re designing, or
rework an older project. Just do something to get some
experience beyond the exercises and activities in
this book. All you need is a pencil and a problem
to solve… a problem that might benefit from using
JavaScript.

Cut this out and stick it on your refrigerator.

8 Feel something!

Your brain needs to know that this matters. Get
involved with the stories. Make up your own
captions for the photos. Groaning over a bad joke is
still better than feeling nothing at all.

10 Get Sleep.

You’ve got to create a lot of new brain connections
to learn to program. Sleep often; it helps.

xxxii intro

Read Me

how to use this book

This is a learning experience, not a reference book. We deliberately stripped out everything
that might get in the way of learning whatever it is we’re working on at that point in the
book. And the first time through, you need to begin at the beginning, because the book
makes assumptions about what you’ve already seen and learned.

We teach the GOOD parts of JavaScript, and warn you about the
BAD parts.
JavaScript is a programming language that didn’t come up through the ivy leagues with
plenty of time for academic peer review. JavaScript was thrown out into the world out of
necessity and grew up in the early browser neighborhood. So, be warned: JavaScript has
some great parts and some not so great parts. But, overall, JavaScript is brilliant, if you use it
intelligently.

In this book, we teach you to use the great parts to best advantage, and we’ll point out the
bad parts, and advise you to drive around them.

We don’t exhaustively cover every single aspect of the language.
There’s a lot you can learn about JavaScript. This book is not a reference book; it’s a learning
book, so it doesn’t cover everything there is to know about JavaScript. Our goal is to teach
you the fundamentals of using JavaScript so that you can pick up any old reference book and
do whatever you want with JavaScript.

This book does teach you JavaScript in the browser.
The browser is not only the most common environment that JavaScript runs in, it’s also the
most convenient (everyone has a computer with a text editor and a browser, and that’s all you
need to get started with JavaScript). Running JavaScript in the browser also means you get
instant gratification: you can write code and all you have to do is reload your web page to see
what it does.

This book advocates well-structured and readable code based on
best practices.

You want to write code that you and other people can read and understand, code that will
still work in next year’s browsers. You want to write code in the most straight-forward way so
you can get the job done and get on to better things. In this book we’re going to teach you to
write clear, well-organized code that anticipates change from the get-go. Code you can be
proud of, code you’ll want to frame and put on the wall (just take it down before you bring
your date over).

We encourage you to use more than one browser with this book.
We teach you to write JavaScript that is based on standards, but you’re still likely to encounter
minor differences in the way web browsers interpret JavaScript. While we’ll do our best to
ensure all the code in the book works in all modern browsers, and even show you a couple

the intro

you are here� xxxiii

of tricks to make sure your code is supported by those browsers, we encourage you to pick
at least two browsers and test your JavaScript using them. This will give you experience in
seeing the differences among browsers and in creating JavaScript code that works well in a
variety of browsers with consistent results.

Programming is serious business. You’re going to have to work,
sometimes hard.
If you’ve already had some programming experience, then you know what we’re talking
about. If you’re coming straight from Head First HTML and CSS, then you’re going to find
writing code is a little, well, different. Programming requires a different way of thinking.
Programming is logical, at times very abstract, and requires you to think in an algorithmic
way. But no worries; we’re going to do all that in a brain-friendly way. Just take it a bit
at a time, make sure you’re well nourished and get plenty of sleep. That way, these new
programming concepts will really sink in.

The activities are NOT optional.
The exercises and activities in this book are not add-ons; they’re part of the core content of
the book. Some of them are to help with memory, some are for understanding, and some
will help you apply what you’ve learned. Don’t skip the exercises. The crossword puzzles
are the only things you don’t have to do, but they’re good for giving your brain a chance to
think about the words in a different context.

The redundancy is intentional and important.
One distinct difference in a Head First book is that we want you to really get it. And we
want you to finish the book remembering what you’ve learned. Most reference books don’t
have retention and recall as a goal, but this book is about learning, so you’ll see some of the
same concepts come up more than once.

The examples are as lean as possible.
Our readers tell us that it’s frustrating to wade through 200 lines of an example looking for
the two lines they need to understand. Most examples in this book are shown within the
smallest possible context, so that the part you’re trying to learn is clear and simple. Don’t
expect all of the examples to be robust, or even complete—they are written specifically for
learning, and aren’t always fully-functional.

We’ve placed all the example files on the Web so you can download them. You’ll find them
at http://wickedlysmart.com/hfjs.

The ‘Brain Power’ exercises don’t usually have answers.
For some of them, there is no right answer, and for others, part of the learning experience
of the Brain Power activities is for you to decide if and when your answers are right. In
some of the Brain Power exercises you will find hints to point you in the right direction.

http://wickedlysmart.com/hfjs

how to use this book

xxxiv intro

We often give you only the code, not the markup.
After we get past the first chapter or two, we often give you just the JavaScript code and
assume you’ll wrap it in a nice HTML wrapper. Here’s a simple HTML page you can use
with most of the code in this book, and if we want you to use other HTML, we’ll tell you:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>Your HTML Page</title>

 <script>

 </script>

 </head>

 <body>

 </body>

</html>

Your JavaScript code will typically go here.

Any web page content will go here.

But don’t worry; at the beginning of the
book we’ll take you through everything.

Get the code examples, help and discussion
You’ll find everything you need for this book online at http://wickedlysmart.com/hfjs,
including code sample files and additional support material including videos.

http://wickedlysmart.com/hfjs

the intro

you are here� xxxv

Tech Reviewers

Thank you to our amazing review team

This book has been more carefully reviewed than any of our previous books. In fact, over 270 people joined
our WickedlySmart Insiders program and participated in reading and critiquing this book in real time as we
wrote it. This worked better than we ever imagined and was instrumental in shaping every aspect of Head
First JavaScript Programming. Our heartfelt thanks to everyone who participated; the book is so much better
because of you.

The amazing technical reviewers pictured above provided feedback above and beyond, and each made
significant contributions to this book. The following reviewers also made contributions across different aspects
of the book: Galina N. Orlova, J. Patrick Kelley, Claus-Peter Kahl, Rob Cleary,
Rebeca Dunn-Krahn, Olaf Schoenrich, Jim Cupec, Matthew M. Hanrahan, Russell
Alleen-Willems, Christine J. Wilson, Louis-Philippe Breton, Timo Glaser, Charmaine
Gray, Lee Beckham, Michael Murphy, Dave Young, Don Smallidge, Alan Rusyak, Eric R.
Liscinsky, Brent Fazekas, Sue Starr, Eric (Orange Pants) Johnson, Jesse Palmer, Manabu
Kawakami, Alan McIvor, Alex Kelley, Yvonne Bichsel Truhon, Austin Throop, Tim Williams, J. Albert
Bowden II, Rod Shelton, Nancy DeHaven Hall, Sue McGee, Francisco Debs, Miriam Berkland, Christine H
Grecco, Elhadji Barry, Athanasios Valsamakis, Peter Casey, Dustin Wollam and Robb Kerley.

Jeff Straw
Ismaël Martin “Bing” Demiddel

Frank D. Moore

Alfred J. Speller
Javier Ruedas

Bruce Forkush

These guys really rocked it; they
were there for us throughout the
review process and provided invaluable,
detailed feedback on everything!

xxxvi intro

We’re also extremely grateful to our esteemed technical reviewer David
Powers. The truth is we don’t write books without David anymore, he’s
just saved our butts too many times. It’s getting a little like Elton and Bernie;
we’re starting to ask ourselves if we actually could write a book without
him. David helps us forces us to make the book more sound and technically
accurate, and his second career as a standup comic really comes in handy
when we’re tuning the more humorous parts of the book. Thank you once
again David—you’re the ultimate professional and we sleep better at night
knowing we’ve passed your technical muster.

At O’Reilly:

A huge, massive thanks to

our editor, Meghan
Blanchette, who
cleared the path for
this book, removed
every obstacle to its
completion, waited
patiently and
sacrificed family
time to get it done. She’s also the person who keeps us sane in
our relationship with O’Reilly (and keeps O’Reilly sane in their
relationship with us). We love you and can’t wait to collaborate with
you again!

And another big shoutout

to our Chief Editor Emeritus, Mike Hendrickson, who
spearheaded this book from the very beginning. Thanks again Mike;
none of our books would have happened without you. You’ve been our
champion for well over a decade and we love you for it!

Acknowledgments*

*The large number of acknowledgments is because we’re testing the theory
that everyone mentioned in a book acknowledgment will buy at least one copy,
probably more, what with relatives and everything. If you’d like to be in the
acknowledgment of our next book, and you have a large family, write to us.

Don’t let the smile fool
you, this guy is hard core
(technically of course).

Esteemed Reviewer,
David Powers

Meghan Blanchette

the review team

Mike Hendrickson

the intro

you are here� xxxvii

Also At O’Reilly:

Our sincerest thanks as well to the whole O’Reilly team: Melanie Yarbrough, Bob Pfahler and
Dan Fauxsmith, who wrangled the book into shape; to Ed Stephenson, Huguette Barriere,
and Leslie Crandell who led the way on marketing and we appreciate their out-of-the-box
approach. Thanks to Ellie Volkhausen, Randy Comer and Karen Montgomery for their
inspired cover design that continues to serve us well. Thank you, as always, to Rachel Monaghan
for her hardcore copyedit (and for keeping it all fun), and to Bert Bates for his valuable feedback.

this is a new chapter 1

Getting your feet wet

1 a quick dip into javascript

Come on in, the water’s
great! We’re going to dive

right in and check out JavaScript,
write some code, run it and watch it

interact with your browser! You’re
going to be writing code in no

time.

JavaScript gives you superpowers. The true programming

language of the web, JavaScript lets you add behavior to your web pages. No

more dry, boring, static pages that just sit there looking at you—with JavaScript

you’re going to be able to reach out and touch your users, react to interesting

events, grab data from the web to use in your pages, draw graphics right in your

web pages and a lot more. And once you know JavaScript you’ll also be in a

position to create totally new behaviors for your users.

You’ll be in good company too, JavaScript’s not only one of the most popular

programming languages, it’s also supported in all modern (and most ancient)

browsers; JavaScript’s even branching out and being embedded in a lot of

environments outside the browser. More on that later; for now, let’s get started!

2 Chapter 1

how javascript works

The way JavaScript works

So let’s introduce JavaScript, HTML & CSS’s
computational cousin. JavaScript lets you create
behavior in your web pages. Need to react when a
user clicks on your “On Sale for the next 30 seconds!”
button? Double check your user’s form input on the fly?
Grab some tweets from Twitter and display them? Or
how about play a game? Look to JavaScript. JavaScript
gives you a way to add programming to your page so
that you can compute, react, draw, communicate, alert,
alter, update, change, and we could go on... anything
dynamic, that’s JavaScript in action.

And you already know that we
use CSS, or Cascading Style
Sheets, to specify how the
HTML is presented...the colors,
fonts, borders, margins, and
the layout of your page. CSS
gives you style, and it does it
in a way that is separate from
the structure of the page.

You already know
we use HTML, or
Hypertext Markup
Language, to specify
all the content of
your pages along
with their structure,
like paragraphs,
headings and
sections.

HTML CSS

JS

If you’re used to creating structure, content, layout and style in your web pages,
isn’t it time to add a little behavior as well? These days, there’s no need for
the page to just sit there. Great pages should be dynamic, interactive, and they
should work with your users in new ways. That’s where JavaScript comes in.
Let’s start by taking a look at how JavaScript fits into the web page ecosystem:

Browser

you are here 4 3

a quick dip into javascript

CSS

How you’re going to write JavaScript

You create your page
just like you always do,
with HTML content and
CSS style. And you also
include JavaScript in
your page. As you’ll see,
just like HTML and CSS,
you can put everything
together in one file, or
you can place JavaScript
in its own file, to be
included in your page.

Writing

<html>
<head>
<title>Icecream</title>
<script>
 var x = 49;
</script>
</head>
<body>
<h1>Icecream Flavors</h1>
<h2>49 flavors</h2>
<p>All your favorite
flavors!</p>
</body>
</html>

1

The browser starts
executing your code as
soon as it encounters it in
your page, and continues
executing it for the lifetime
of your page. Unlike early
versions of JavaScript,
today’s JavaScript is
a powerhouse, using
advanced compilation
techniques to execute
your code at nearly the
same speed as many native
programming languages.

3

Executing

Point your browser to your
page, just as you always
do. When the browser sees
code, it starts parsing it
immediately, getting ready
to execute it. Note that
like HTML and CSS, if the
browser sees errors in your
code, it will do its best to
keep moving and reading
more JavaScript, HTML and
CSS. The last thing it wants
to do is not be able to give
the user a page to see.

Browser

2

Loading

html

head

title script

body

h1 ph2

em

Browser

JavaScript is fairly unique in the programming world. With your typical
programming language you have to write it, compile it, link it and deploy
it. JavaScript is much more fluid and flexible. With JavaScript all you
need to do is write JavaScript right into your page, and then load it into a
browser. From there, the browser will happily begin executing your code.
Let’s take a closer look at how this works:

For future reference, the browser also builds an “object model" of your HTML page that JavaScript can make use of. Put that in the back of your brain, we'll come back to it later...

We’ll talk about the best way in a bit...

4 Chapter 1

get javascript in your page

How to get JavaScript into your page
First things first. You can’t get very far with JavaScript if you don’t know
how to get it into a page. So, how do you do that? Using the <script>
element of course!

Let’s take a boring old, garden-variety web page and add some dynamic
behavior using a <script> element. Now, at this point, don’t worry too
much about the details of what we’re putting into the <script> element—
your goal right now is to get some JavaScript working.

<!doctype html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>Just a Generic Page</title>

 <script>

 setTimeout(wakeUpUser, 5000);

 function wakeUpUser() {

 alert("Are you going to stare at this boring page forever?");

 }

 </script>

 </head>

 <body>

 <h1>Just a generic heading</h1>

 <p>Not a lot to read about here. I'm just an obligatory paragraph living in
an example in a JavaScript book. I'm looking for something to make my life more
exciting.</p>

 </body>

</html>

Here's our standard HTML5 doctype, and
<html> and <head> elements.

And we've got a pretty generic <body> for this page as well.

Ah, but we've added a script element to
the <head> of the page.

And we've written some JavaScript code
inside it.

Again, don’t worry too much about what this code does.
Then again, we bet you’ll want to take a look at the code
and see if you can think through what each part might do.

Go ahead and type this page into a file named “behavior.html”. Drag
the file to your browser (or use File > Open) to load it. What does it do?
Hint, you’ll need to wait five seconds to find out.

A little test drive

you are here 4 5

a quick dip into javascript

Q: I’ve heard JavaScript is a bit of a wimpy language. Is it?

A: JavaScript certainly wasn’t a power lifter in its early days, but
its importance to the web has grown since then, and as a result,
many resources (including brain power from some of the best minds
in the business) have gone into supercharging the performance of
JavaScript. But, you know what? Even before JavaScript was super
fast, it was always a brilliant language. As you'll see, we’re going to
do some very powerful things with it.

Q: Is JavaScript related to Java?

A: Only by name. JavaScript was created during a time when
Java was a red hot popular language, and the inventors of JavaScript
capitalized on that popularity by making use of the Java name. Both
languages borrow some syntax from programming languages like C,
but other than that, they are quite different.

Q: Is JavaScript the best way to create dynamic web pages?
What about solutions like Flash?

A: There was a time when Flash may have been the preferred
choice for many to create interactive and more dynamic web pages,
but the industry direction is moving strongly in favor of HTML5
with JavaScript. And, with HTML5, JavaScript is now the standard
scripting language for the Web. Many resources are going into
making JavaScript fast and efficient, and creating JavaScript APIs
that extend the functionality of the browser.

Q: My friend is using JavaScript inside Photoshop, or at least
he says he is. Is that possible?

A: Yes, JavaScript is breaking out of the browser as a general
scripting language for many applications from graphics utilities to
music applications and even to server-side programming. Your
investment in learning JavaScript is likely to pay off in ways beyond
web pages in the future.

Q: You say that many other languages are compiled. What
exactly does that mean and why isn't JavaScript?

A: With conventional programming languages like C, C++ or
Java, you compile the code before you execute it. Compiling takes
your code and produces a machine efficient representation of it,
usually optimized for runtime performance. Scripting languages are
typically interpreted, which means that the browser runs each line
of JavaScript code as it gets to it. Scripting languages place less
importance on runtime performance, and are more geared towards
tasks like prototyping, interactive coding and flexibility. This was
the case with early JavaScript, and was why, for many years, the
performance of JavaScript was not so great. There is a middle
ground however; an interpreted language can be compiled on the fly,
and that’s the path browser manufacturers have taken with modern
JavaScript. In fact, with JavaScript you now have the conveniences
of a scripting language, while enjoying the performance of a compiled
language. By the way, we’ll use the words interpret, evaluate and
execute in this book. They have slightly different meanings in various
contexts, but for our purposes, they all basically mean the same thing.

Relax
Just relax. At this point we don’t expect you to read JavaScript like you grew up with it. In fact,
all we want you to do right now is get a feel for what JavaScript looks like.

That said, you’re not totally off the hook because we need to get your brain revved up and
working. Remember that code on the previous page? Let’s just walk through it to get a feel for
what it might do:

 setTimeout(wakeUpUser, 5000);

 function wakeUpUser() {

 alert("Are you going to stare at this boring page forever?");

 }

Perhaps a way to count five seconds of time? Hint:
1000 milliseconds = 1 second.

Clearly a way to alert the user with a message.

A way to create
reusable code
and call it

“wakeUpUser”?

6 Chapter 1

javascript history

JavaScript, you’ve come a long way baby...

JavaScript 1.0 JavaScript 1.3
Netscape might have been before your
time, but it was the first real browser
company. Back in the mid-1990s browser
competition was fierce, particularly with
Microsoft, and so adding new, exciting
features to the browser was a priority.

And towards that goal, Netscape wanted
to create a scripting language that would
allow anyone to add scripts to their
pages. Enter LiveScript, a language
developed in short order to meet that
need. Now if you’ve never heard of
LiveScript, that’s because this was all
about the time that Sun Microsystems
introduced Java, and, as a result, drove
their own stock to stratospheric levels. So,
why not capitalize on that success and
rename LiveScript to JavaScript? After
all, who cares if they don’t actually have
anything to do with each other? Right?

Did we mention Microsoft? They
created their own scripting language
soon after Netscape did, named, um,
JScript, and it was, um, quite similar to
JavaScript. And so began the browser
wars.

Between 1996 and 2000, JavaScript
grew up. In fact, Netscape submitted
JavaScript for standardization and
ECMAScript was born. Never
heard of ECMAScript? That’s
okay, now you have; just know that
ECMAScript serves as the standard
language definition for all JavaScript
implementations (in and out of the
browser).

During this time developers
continued struggling with JavaScript
as casualties of the browser wars
(because of all the differences in
browsers), although the use of
JavaScript became common-place
in any case. And while subtle
differences between JavaScript and
JScript continued to give developers
headaches, the two languages began
to look more and more like each
other over time.

JavaScript still hadn’t outgrown
its reputation as an amateurish
language, but that was soon to
change...

Finally, JavaScript comes of
age and gains the respect of
professional developers! While
you might say it’s all due to
having a solid standard, like
ECMAScript 5, which is now
implemented in all modern
browsers, it’s really Google that
pushed JavaScript usage into the
professional limelight, when in
2005 they released Google Maps
and showed the world what could
really be done with JavaScript to
create dynamic web pages.

With all the new attention,
many of the best programming
language minds focused
on improving JavaScript’s
interpreters and made vast
improvements to its runtime
performance. Today, JavaScript
stands with only a few changes
from the early days, and despite
its rushed birth into the world, is
showing itself to be a powerful
and expressive language.

JavaScript 1.8.5

1995 2000 2012

you are here 4 7

a quick dip into javascript

Look how easy it is
to write JavaScript

var price = 28.99;

var discount = 10;

var total =
 price - (price * (discount / 100));

if (total > 25) {

 freeShipping();

}

var count = 10;

while (count > 0) {

 juggle();

 count = count - 1;

}

var dog = {name: "Rover", weight: 35};

if (dog.weight > 30) {

 alert("WOOF WOOF");

} else {

 alert("woof woof");

}

var circleRadius = 20;

var circleArea =

 Math.PI * (circleRadius * circleRadius);

You don’t know JavaScript yet, but we bet you can make some
good guesses about how JavaScript code works. Take a look at
each line of code below and see if you can guess what it does.
Write in your answers below. We’ve done one for you to get you
started. If you get stuck, the answers are on the next page.

Create a variable named price, and assign the value 28.99 to it.

8 Chapter 1

javascript exercise solution

Look how easy it is
to write JavaScript

var price = 28.99;

var discount = 10;

var total =
 price - (price * (discount / 100));

if (total > 25) {

 freeShipping();

}

var count = 10;

while (count > 0) {

 juggle();

 count = count - 1;

}

var dog = {name: "Rover", weight: 35};

if (dog.weight > 30) {

 alert("WOOF WOOF");

} else {

 alert("woof woof");

}

var circleRadius = 20;

var circleArea =

 Math.PI * (circleRadius * circleRadius);

You don’t know JavaScript yet, but we bet you can make some
good guesses about how JavaScript code works. Take a look at
each line of code below and see if you can guess what it does.
Write in your answers below. We’ve done one for you to get you
started. Here are our answers.

Create a variable named price, and assign the value 28.99 to it.
Create a variable named discount, and assign the value 10 to it.
Compute a new price by applying a discount and then assign it
to the variable total.
Compare the value in the variable total to 25. If it's greater...
 ...then do something with freeShipping.
End the if statement

Create a variable named count, and assign the value 10 to it.
As long as the variable count is greater than 0...
 ...do some juggling, and...
 ...reduce the value of count by 1 each time.
End the while loop

Create a dog with a name and weight.

If the dog’s weight is greater than 30...
 ...alert “WOOF WOOF" to the browser’s web page
Otherwise...
 ...alert “woof woof” to the browser’s web page
End the if/else statement

Create a variable, circleRadius, and assign the value 20 to it.
Create a variable named circleArea...
 ...and assign the result of this expression to it
 (1256.6370614359173)

you are here 4 9

a quick dip into javascript

And usually
increase the
size of your
paycheck too!

Look, if you
want to go beyond creating

just static web pages, you
gotta have JavaScript chops.

It’s True.
With HTML and CSS you can create some great looking pages. But once you
know JavaScript, you can really expand on the kinds of pages you can create.
So much so, in fact, you might actually start thinking of your pages as
applications (or even experiences!) rather than mere pages.

Now, you might be saying, “Sure, I know that. Why do you think I’m reading this
book?” Well, we actually wanted to use this opportunity to have a little chat about
learning JavaScript. If you already have a programming language or scripting
language under your belt, then you have some idea of what lies ahead. However,
if you’ve mostly been using HTML & CSS to date, you should know that there is
something fundamentally different about learning a programming language.

With HTML & CSS what you’re doing is largely declarative—for instance, you’re
declaring, say, that some text is a paragraph or that all elements in the “sale” class
should be colored red. With JavaScript you’re adding behavior to the page, and to
do that you need to describe computation. You need to be able to describe things
like, “compute the user’s score by summing up all the correct answers” or “do
this action ten times” or “when the user clicks on that button play the you-have-
won sound” or even “go off and get my latest tweet, and put it in this page.”

To do those things you need a language that is quite different from HTML or
CSS. Let’s see how…

10 Chapter 1

javascript statements

With HTML we mark up text to create structure. Like, “I need a large heading called Mocha Cafe Latte; it’s a heading for a drink. And I need a paragraph after that.”

How to make a statement
When you create HTML you usually mark up text to give it structure; to do
that you add elements, attributes and values to the text:

<h1 class="drink">Mocha Caffe Latte</h1>

<p>Espresso, steamed milk and chocolate syrup,
just the way you like it.</p>

CSS is a bit different. With CSS you’re writing a set of rules, where each rule
selects elements in the page, and then specifies a set of styles for those elements:

h1.drink {

 color: brown;

}

p {

 font-family: sans-serif;

}

With JavaScript you write statements. Each statement specifies a small part of a
computation, and together, all the statements create the behavior of the page:

var age = 25;

var name = "Owen";

if (age > 14) {

 alert("Sorry this page is for kids only!");

} else {

 alert("Welcome " + name + "!");

}

A set of statements.

With CSS we write rules that use selectors,
like h1.drink and p, to determine what parts
of the HTML the style is applied to.

Each statement does a little bit of work, like declaring some variables to contain values for us.

Or making decisions, such as: Is the age of the user greater than 14?

And if so alerting the user
they are too old for this page.

Otherwise, we welcome the user by name,
like this: “Welcome Owen!” (but since Owen
is 25, we don’t do that in this case.)

...and we want all the paragraphs to have a sans-serif type font.

Here we create a variable to contain an age of 25, and
we also need a variable to contain the value “Owen”.

Let’s make sure all drink
headings are colored brown...

you are here 4 11

a quick dip into javascript

Variables and values
You might have noticed that JavaScript statements usually involve
variables. Variables are used to store values. What kinds of values?
Here are a few examples:

var winners = 2;

var name = "Duke";

var isEligible = false;

This statement declares a
variable named winners and
assigns a numeric value of 2 to it.

This one assigns a string of
characters to the variable name
(we call those “strings,” for short).

And this statement assigns the value false to the
variable isEligible. We call true/false values “booleans.”

winners

2

name

“D
uk

e”

isEligible

fal
se

losers

No value?! What am
I supposed to do now?!
I’m so humiliated.

There are other values that variables can hold beyond numbers, strings
and booleans, and we’ll get to those soon enough, but, no matter what
a variable contains, we create all variables the same way. Let’s take a
little closer look at how to declare a variable:

We say optionally, because if you want, you can create a variable without
an initial value, and then assign it a value later. To create a variable
without an initial value, just leave off the assignment part, like this:

We always start
with the var
keyword when
declaring a variable.

var winners = 2;

NO EXCEPTIONS! Even if
JavaScript doesn’t complain
when you leave off the var.
We’ll tell you why later... Next we give the

variable a name.

And, optionally, we assign a value to the variable by
adding an equals sign followed by the value.

var losers;

By leaving off the
equals sign and value
you’re just declaring the
variable for later use.

Pronounced “boo-lee-ans.”
Notice we don’t put quotes
around boolean values.

We always end an assignment
statement with a semicolon.

12 Chapter 1

javascript keywords

Back away from that keyboard!
You know variables have a name, and you know they have a value.

You also know some of the things a variable can hold are numbers, strings and boolean values.

But what can you call your variables? Is any name okay? Well no, but the rules around
creating variable names are simple: just follow the two rules below to create valid variable names:

1

2

Start your variables with a letter, an underscore or a
dollar sign.

After that, use as many letters, numeric digits,
underscores or dollar signs as you like.

Oh, and one more thing; we really don’t want to confuse JavaScript by using any of the built-in
keywords, like var or function or false, so consider those off limits for your own variable names.
We’ll get to some of these keywords and what they mean throughout the rest of the book, but
here’s a list to take a quick look at:

Q: What’s a keyword?

A: A keyword is a reserved word in
JavaScript. JavaScript uses these reserved
words for its own purposes, and it would
be confusing to you and the browser if you
started using them for your variables.

Q: What if I used a keyword as part
of my variable name? For instance, can
I have a variable named ifOnly (that is, a
variable that contains the keyword if)?

A: You sure can, just don’t match the
keyword exactly. It’s also good to write clear
code, so in general you wouldn’t want to
use something like elze, which might be
confused with else.

Q: Is JavaScript case sensitive?
In other words, are myvariable and
MyVariable the same thing?

A: If you’re used to HTML markup you
might be used to case insensitive languages;
after all, <head> and <HEAD> are treated
the same by the browser. With JavaScript
however, case matters for variables,
keywords, function names and pretty much
everything else, too. So pay attention to your
use of upper- and lowercase.

break
case
catch
class
const
continue
debugger
default

delete
do
else
enum
export
extends
false
finally

for
function
if
implements
import
in
instanceof
interface

let
new
package
private
protected
public
return
static

super
switch
this
throw
true
try
typeof
var

void
while
with
yield

you are here 4 13

a quick dip into javascript

 � Each statement ends in a semicolon.
x = x + 1;

 � A single line comment begins with two forward
slashes. Comments are just notes to you or other
developers about the code.They aren’t executed.
// I'm a comment

 � Whitespace doesn’t matter (almost everywhere).
x = 2233;

 � Surround strings of characters with double quotes
(or single, both work, just be consistent).
"You rule!"
'And so do you!'

 � Don’t use quotes around the boolean values true
and false.
rockin = true;

 � Variables don’t have to be given a value when
they are declared:
var width;

 � JavaScript, unlike HTML markup, is case
sensitive, meaning upper- and lowercase matters.
The variable counter is different from the
variable Counter.

Syntax Fun

You’ve got a lot of flexibility in choosing your variable names, so here are a few Webville tips to make your naming easier:
Choose names that mean something. Variable names like _m, $, r and foo might mean something to you but they are generally frowned upon in Webville. Not only are you likely to forget them over time, your code will be much more readable with names like angle, currentPressure and passedExam.

Use “camel case” when creating multiword variable names.
At some point you’re going to have to decide how you name a variable that represents, say, a two-headed dragon with fire. How? Just use camel case, in which you capitalize the first letter of each word (other than the first): twoHeadedDragonWithFire. Camel case is easy to form, widely spoken in Webville and gives you enough flexibility to create as specific a variable name as you need. There are other schemes too, but this is one of the more commonly used (even beyond JavaScript).

Use variables that begin with _ and $ only with very good reason.
Variables that begin with $ are usually reserved for JavaScript libraries and while some authors use variables beginning with _ for various conventions, we recommend you stay away from both unless you have very good reason (you’ll know if you do).Be safe.

Be safe in your variable naming; we’ll cover a few more tips for staying safe later in the book, but for now be clear in your naming, avoid keywords, and always use var when declaring a variable.

WEBVILLE T I M E SHow to avoid those embarassing naming mistakes

14 Chapter 1

syntax exercise

Below, you’ll find JavaScript code
with some mistakes in it. Your
job is to play like you’re the
browser and find the errors in

the code. After you’ve
done the exercise
look at the end of
the chapter to see if
you found them all.

// Test for jokes

var joke = "JavaScript walked into a bar....';

var toldJoke = "false";

var $punchline =

 "Better watch out for those semi-colons."

var %entage = 20;

var result

if (toldJoke == true) {

 Alert($punchline);

} else

 alert(joke);

}

\\ Movie Night

var zip code = 98104;

var joe'sFavoriteMovie = Forbidden Planet;

var movieTicket$ = 9;

if (movieTicket$ >= 9) {

 alert("Too much!");

} else {

 alert("We're going to see " + joe'sFavoriteMovie);

}

A

B

BE the Browser

Don't worry too much about what this
JavaScript does for now; just focus on
looking for errors in variables and syntax.

you are here 4 15

a quick dip into javascript

Express yourself

var total = price - (price * (discount / 100));

Here’s a JavaScript statement that assigns the result of
evaluating an expression to the variable total.

And this whole thing is an expression.
Here’s our variable total. And the

assignment.

To truly express yourself in JavaScript you need expressions.
Expressions evaluate to values. You’ve already seen a few in passing in
our code examples. Take the expression in this statement for instance:

This expression evaluates
to a price reduced by
a discount that is a
percent of the price. So
if your price is 10 and the
discount is 20, we get 8
as a result.

If you’ve ever taken a math class, balanced your checkbook or done your
taxes, we’re sure these kinds of numeric expressions are nothing new.

There are also string expressions; here are a few:

"Dear " + "Reader" + ","

"super" + "cali" + youKnowTheRest

phoneNumber.substring(0,3)

We also have expressions that evaluate to true or false, otherwise
known as boolean expressions. Work through each of these to see how
you get true or false from them:

age < 14

cost >= 3.99

animal == "bear"

And expressions can evaluate to a few other types; we’ll get to these
later in the book. For now, the important thing is to realize all these
expressions evaluate to something: a value that is a number, a string or
a boolean. Let’s keep moving and see what that gets you!

This adds together, or concatenates, these strings to
form a new string “Dear Reader,”.

Same here, except we have a variable that
contains a string as part of the expression. This
evaluates to “supercalifragilisticexpialidocious”.

Just another example of an expression that results in a string.
We’ll get to exactly how this works later, but this returns the
area code of a US phone number string.

*

* Of course, that is assuming the variable youKnowTheRest is “fragilisticexpialidocious”.

If a person’s age is less than 14 this is true, otherwise it is false.
We could use this to test if someone is a child or not.

If the cost is 3.99 or greater, this is true. Otherwise it’s false. Get ready to buy on sale when it’s false!

This is true when animal contains the string “bear”. If it does, beware!

We use * for multiply
and / for divide.

16 Chapter 1

expressions exercise

(9 / 5) * temp + 32

color == "orange"

name + ", " + "you've won!"

yourLevel > 5

(level * points) + bonus

color != "orange"

1000 + "108"

What is the result when temp is 10? __________

Is this expression true or false when color has the value
“pink”? __________
Or has the value “orange”? __________

What value does this compute to when name is “Martha”?

When yourLevel is 2, what does this evaluate to? ________

When yourLevel is 5, what does this evaluate to? ________

When yourLevel is 7, what does this evaluate to? ________

Okay, level is 5, points is 30,000 and bonus is 3300. What
does this evaluate to? ________

Is this expression true or false when color has the value
“pink”? __________

Get out your pencil and put some expressions through their paces. For each expression below, compute its
value and write in your answer. Yes, WRITE IN… forget what your Mom told you about writing in books and
scribble your answer right in this book! Be sure to check your answers at the end of the chapter.

Serious Coding
Did you notice that the =
operator is used in assignments,

while the == operator tests for equality?
That is, we use one equal sign to assign
values to variables. We use two equal
signs to test if two values are equal to
each other. Substituting one for the other is a common coding mistake.

Can you say “Celsius to Fahrenheit calculator”?

This tests if the first
value is greater than the
second. You can also use
>= to test if the first
value is greater than or
equal to the second.

The != operator tests if two values
are NOT equal to each other.

Extra CREDIT!

Are there a few possible answers?
Only one is correct. Which would you
choose? ______________________

This is a boolean expression. The
== operator tests if two values
are equal to each other.

you are here 4 17

a quick dip into javascript

while (scoops > 0) {

 document.write("Another scoop!");

 scoops = scoops - 1;

}

Doing things more than once
You do a lot of things more than once:

Lather, rinse, repeat…

Wax on, wax off…

Eat candies from the bowl until they’re all gone.

Of course you’ll often need to do things in code more than once, and
JavaScript gives you a few ways to repeatedly execute code in a loop: while,
for, for in and forEach. Eventually, we’ll look at all these ways of looping,
but let’s focus on while for now.

We just talked about expressions that evaluate to boolean values, like
scoops > 0, and these kinds of expressions are the key to the while
statement. Here’s how:

while (juggling) {

 keepBallsInAir();

}

While uses a boolean expression
that we call a conditional test, or
conditional for short.

A while statement starts

with the keyword while.

If the conditional is true,
everything in the code
block is executed.

What’s a code block?
Everything between the curly
braces; that is, between { }.

And, if our conditional is true, then,
after we execute the code block, we
loop back around and do it all again. If
the conditional is false, we’re done.

Like we said, lather, rinse, repeat!

18 Chapter 1

javascript iteration

Seeing as this is your first while loop, let’s trace through a round of its execution
to see exactly how it works. Notice we’ve added a declaration for scoops to
declare it, and initialize it to the value 5.

How the while loop works

var scoops = 5;
while (scoops > 0) {
 document.write("Another scoop!
");
 scoops = scoops - 1;
}
document.write("Life without ice cream isn't the same");

var scoops = 5;
while (scoops > 0) {
 document.write("Another scoop!
");
 scoops = scoops - 1;
}
document.write("Life without ice cream isn't the same");

After that we hit the while statement. When we evaluate a while
statement the first thing we do is evaluate the conditional to see if
it’s true or false.

Is scoops greater
than zero? Looks
like it to us!

Now let’s start executing this code. First we set scoops to five.

Because the conditional is true, we start executing the block of code.
The first statement in the body writes the string “Another scoop!
”
to the browser.

var scoops = 5;
while (scoops > 0) {
 document.write("Another scoop!
");
 scoops = scoops - 1;
}
document.write("Life without ice cream isn't the same");

you are here 4 19

a quick dip into javascript

var scoops = 5;
while (scoops > 0) {
 document.write("Another scoop!
");
 scoops = scoops - 1;
}
document.write("Life without ice cream isn't the same");

The next statement subtracts one from the number of
scoops and then sets scoops to that new value, four.

1 scoop gone,
4 left!

That’s the last statement in the block, so we loop back up
to the conditional and start over again.

var scoops = 5;
while (scoops > 0) {
 document.write("Another scoop!
");
 scoops = scoops - 1;
}
document.write("Life without ice cream isn't the same");

var scoops = 5;
while (scoops > 0) {
 document.write("Another scoop!
");
 scoops = scoops - 1;
}
document.write("Life without ice cream isn't the same");

Evaluating our conditional again, this time scoops is four. But
that’s still more than zero.

Still plenty left!

Once again we write the string “Another scoop!
” to the browser.

var scoops = 5;
while (scoops > 0) {
 document.write("Another scoop!
");
 scoops = scoops - 1;
}
document.write("Life without ice cream isn't the same");

20 Chapter 1

javascript while loop

var scoops = 5;
while (scoops > 0) {
 document.write("Another scoop!
");
 scoops = scoops - 1;
}
document.write("Life without ice cream isn't the same");

The next statement subtracts one from the number of
scoops and sets scoops to that new value, which is three.

2 scoops gone,
3 left!

That’s the last statement in the block, so we loop back up
to the conditional and start over again.

var scoops = 5;
while (scoops > 0) {
 document.write("Another scoop!
");
 scoops = scoops - 1;
}
document.write("Life without ice cream isn't the same");

var scoops = 5;
while (scoops > 0) {
 document.write("Another scoop!
");
 scoops = scoops - 1;
}
document.write("Life without ice cream isn't the same");

Evaluating our conditional again, this time scoops is three. But
that’s still more than zero.

Still plenty left!

Once again we write the string “Another scoop!
” to the browser.

var scoops = 5;
while (scoops > 0) {
 document.write("Another scoop!
");
 scoops = scoops - 1;
}
document.write("Life without ice cream isn't the same");

you are here 4 21

a quick dip into javascript

var scoops = 5;
while (scoops > 0) {
 document.write("Another scoop!
");
 scoops = scoops - 1;
}
document.write("Life without ice cream isn't the same");

And as you can see, this continues... each time we
loop, we decrement (reduce scoops by 1), write
another string to the browser, and keep going.

3 scoops gone,
2 left!

var scoops = 5;
while (scoops > 0) {
 document.write("Another scoop!
");
 scoops = scoops - 1;
}
document.write("Life without ice cream isn't the same");

And continues... 4 scoops gone, 1 left!

var scoops = 5;
while (scoops > 0) {
 document.write("Another scoop!
");
 scoops = scoops - 1;
}
document.write("Life without ice cream isn't the same");

Until the last time... this time something’s different. Scoops
is zero, and so our conditional returns false. That’s it folks;
we’re not going to go through the loop anymore, we’re not
going to execute the block. This time, we bypass the block
and execute the statement that follows it.

5 scoops gone, 0 left!

var scoops = 5;
while (scoops > 0) {
 document.write("Another scoop!
");
 scoops = scoops - 1;
}
document.write("Life without ice cream isn't the same");

Now we execute the other document.write, and write the
string “Life without ice cream isn’t the same”. We’re done!

22 Chapter 1

javascript conditionals

You’ve just seen how you use a conditional to decide whether to continue looping in a
while statement. You can also use boolean expressions to make decisions in JavaScript
with the if statement. The if statement executes its code block only if a conditional test
is true. Here’s an example:

if (scoops < 3) {

 alert("Ice cream is running low!");

}

This conditional tests to see if we’re down
to fewer than three scoops.

Making decisions with JavaScript

if (cashInWallet > 5) {
 order = “I’ll take the works: cheeseburger, fries and a coke”;
} else {
 order = “I’ll just have a glass of water”;
}

And if we’ve got fewer than three left, then
we execute the if statement’s code block.

With an if statement we can also string together multiple tests by adding on one or more
else if’s, like this:

if (scoops >= 5) {

 alert("Eat faster, the ice cream is going to melt!");

} else if (scoops < 3) {

 alert("Ice cream is running low!");

}

Add as many tests with “else if” as you need, each with its own associated code block that will be executed when the condition is true.

Here’s the if keyword, followed by a conditional

and a block of code.

alert takes a string and displays it in a popup dialog in your
browser. Give it a try!

We can have one test, and then
another test with if/else if

you are here 4 23

a quick dip into javascript

You can string together as many if/else statements as you need, and if you want one, even a
final catch-all else, so that if all conditions fail, you can handle it. Like this:

And, when you need to make LOTS of decisions

if (scoops >= 5) {

 alert("Eat faster, the ice cream is going to melt!");

} else if (scoops == 3) {

 alert("Ice cream is running low!");

} else if (scoops == 2) {

 alert("Going once!");

} else if (scoops == 1) {

 alert("Going twice!");

} else if (scoops == 0) {

 alert("Gone!");

} else {

 alert("Still lots of ice cream left, come and get it.");

}

In this code we check to see if there are
five or more scoops left...

And if none of the conditions above are true, then this code is executed.

...or if there are 2, 1 or 0, and then we provide the appropriate alert.

...or if there are precisely three left...

Q: What exactly is a block of code?

A: Syntactically, a block of code (which
we usually just call a block) is a set of
statements, which could be one statement,
or as many as you like, grouped together
between curly braces. Once you’ve got a
block of code, all the statements in that
block are treated as a group to be executed
together. For instance, all the statements
within the block in a while statement are
executed if the condition of the while is true.
The same holds for a block in an if or else if.

Q: I’ve seen code where the
conditional is just a variable that is
sometimes a string, not a boolean. How
does that work?

A: We’ll be covering that a little later,
but the short answer is JavaScript is quite
flexible in what it thinks is a true or false
value. For instance, any variable that holds
a (non-empty) string is considered true, but
a variable that hasn’t been set to a value is
considered false. We’ll get into these details
soon enough.

Q: You’ve said that expressions can
result in things other than numbers,
strings and booleans. Like what?

A: Right now we’re concentrating on
what are known as the primitive types, that
is, numbers, strings and booleans. Later
we’ll take a look at more complex types,
like arrays, which are collections of values,
objects and functions.

Q: Where does the name boolean
come from?

A: Booleans are named after George
Boole, an English mathematician who
invented Boolean logic. You’ll often see
boolean written “Boolean,” to signify that
these types of variables are named after
George.

24 Chapter 1

code magnets coding exercise

Code Magnets
A JavaScript program is all scrambled up on the fridge. Can you put the magnets back in the
right places to make a working JavaScript program to produce the output shown below?.
Check your answer at the end of the chapter before you go on.

var name = "Joe";

Your unscrambled program
should produce this output.

Arrange these magnets to make a
working JavaScript program.

Use this space for your
re-arranged magnets.

var i = 0;

while (i < 2) {

document.write("Happy Birthday to you.
");

i = i + 1; }

document.write("Happy Birthday to you.
");

document.write("Happy Birthday dear " + name + ",
");

you are here 4 25

a quick dip into javascript

We’re using these three
methods in this chapter.

As you’ve seen, the browser gives you a quick way to alert your
users through the alert function. Just call alert with a string
containing your alert message, and the browser will give your
user the message in a nice dialog box. A small confession though:
we’ve been overusing this because it’s easy; alert really should
be used only when you truly want to stop everything and let the
user know something.

We’ve been talking about making your pages more interactive,
and to do that you need to be able to communicate with your user.
As it turns out there are a few ways to do that, and you’ve already
seen some of them. Let’s get a quick overview and then we’ll dive
into these in more detail throughout the book:

Reach out and communicate with your user

Every JavaScript environment also has a console that can log messages
from your code. To write a message to the console’s log you use the
function console.log and hand it a string that you’d like printed to
the log (more details on using console log in a second). You can view
console.log as a great tool for troubleshooting your code, but typically
your users will never see your console log, so it’s not a very effective way
to communicate with them.

Use the console.

Write directly into your document.

Create an alert.

Think of your web page as a document (that’s what the browser calls it).
You can use a function document.write to write arbitrary HTML and
content into your page at any point. In general, this is considered bad
form, although you’ll see it used here and there. We’ve used it a bit in this
chapter too because it’s an easy way to get started.

Directly manipulate your document.
This is the big leagues; this is the way you want to be interacting with your
page and users—using JavaScript you can access your actual web page,
read & change its content, and even alter its structure and style! This all
happens by making use of your browser’s document object model (more on
that later). As you’ll see, this is the best way to communicate with your user.
But, using the document object model requires knowledge of how your
page is structured and of the programming interface that is used to read
and write to the page. We’ll be getting there soon enough. But first, we’ve
got some more JavaScript to learn.

This is what we’re working towards.
When you get there you’ll be able to
read, alter and manipulate your page
in any number of ways.

The console is a really handy way
to help find errors in your code!
If you've made a typing mistake,
like missing a quote, JavaScript
will usually give you an error in the
console to help you track it down.

26 Chapter 1

comparing means of javascript output

All our methods of communication have come to the party with masks on. Can you
help us unmask each one? Match the descriptions on the right to the names on the
left. We’ve done one for you.

document.write

console.log

alert

document object model

I ’ l l stop your user in his
tracks and deliver a short
message. The user has
to click on “ok” to go
further.

I can insert a little HTML
and text into a document.
I’m not the most elegant
way to get a message to
your users, but I work on
every browser.

Using me you can totally
control a web page: get
values that a user typed in,
alter the HTML or the style,
or update the content of
your page.

I’m just here for simple
debugging purposes. Use
me and I can write out
information to a special
developer ’s console.

you are here 4 27

a quick dip into javascript

Take any old string...

A closer look at console.log
Let’s take a closer look at how console.log works so we can use it in this
chapter to see the output from our code, and throughout the book to inspect
the output of our code and debug it. Remember though, the console is not a
browser feature most casual users of the web will encounter, so you won’t want
to use it in the final version of your web page. Writing to the console log is
typically done to troubleshoot as you develop your page. That said, it’s a great
way to see what your code is doing while you’re learning the basics of JavaScript.
Here’s how it works:

var message = "Howdy" + " " + "partner";

console.log(message); ...and give it to console.log, and it will be
shown in the browser’s console, like this.

The console contains all the
output logged by your code.

Q: I get that console.log can be used
to output strings, but what exactly is it? I
mean why are the “console” and the “log”
seperated by a period?

A: Ah, good point. We’re jumping ahead
a bit, but think of the console as an object
that does things, console-like things. One
of those things is logging, and to tell the
console to log for us, we use the syntax

“console.log” and pass it our output in
between parentheses. Keep that in the

back of your mind; we’re coming back to talk
a lot more about objects a little later in the
book. For now, you’ve got enough to use
console.log.

Q: Can the console do anything other
than just log?

A: Yes, but typically people just use it to
log. There are a few more advanced ways
to use log (and console), but they tend to be
browser-specific. Note that console is

something all modern browsers supply, but it
isn’t part of any formal specification.

Q: Uh, console looks great, but where
do I find it? I’m using it in my code and I
don’t see any output!

A: In most browsers you have to explicitly
open the console window. Check out the
next page for details.

28 Chapter 1

using the javascript console

Opening the console
Every browser has a slightly different implementation of the console. And, to make
things even more complicated, the way that browsers implement the console changes
fairly frequently—not in a huge way, but enough so that by the time you read this,
your browser’s console might look a bit different from what we’re showing here.

So, we’re going to show you how to access the console in the Chrome browser
(version 25) on the Mac, and we’ll put instructions on how to access the console in
all the major browsers online at http://wickedlysmart.com/hfjsconsole. Once you
get the hang of the console in one browser, it’s fairly easy to figure out how to use it
in other browsers too, and we encourage you to try using the console in at least two
browsers so you’re familiar with them.

To access the console in Chrome (on
the Mac), use the View > Developer >
JavaScript Console menu.

The console will appear in
the bottom part of your
browser window.

Make sure the Console tab is
selected in the tab bar along
the top of the console.

You should see any messages you
give to console.log in your code
displayed in the window here.Don’t worry about what these other tabs are for. They’re useful, but the most important one now is Console, so we can see console.log messages from our code.

http://wickedlysmart.com/hfjsconsole

you are here 4 29

a quick dip into javascript

Coding a Serious JavaScript Application
Let’s put all these new JavaScript skills and console.log to good
use with something practical. We need some variables, a while
statement, some if statements with elses. Add a little more
polish and we’ll have a super-serious business application before
you know it. But, before you look at the code, think to yourself
how you’d code that classic favorite, “99 bottles of beer.”

var word = "bottles";

var count = 99;

while (count > 0) {

 console.log(count + " " + word + " of beer on the wall");

 console.log(count + " " + word + " of beer,");

 console.log("Take one down, pass it around,");

 count = count - 1;

 if (count > 0) {

 console.log(count + " " + word + " of beer on the wall.");

 } else {

 console.log("No more " + word + " of beer on the wall.");

 }

}

There’s still a little flaw in our code. It runs correctly,
but the output isn’t 100% perfect. See if you can find
the flaw, and fix it.

30 Chapter 1

the script tag

Shouldn’t we
be putting this code in

actual web pages so we can see
the output? Or are we just going to
keep writing answers on paper?

Good point! Yes, it’s time. Before we
got there we wanted to make sure you had
enough JavaScript under your belt to make
it interesting. That said, you already saw in
the beginning of this chapter that you add
JavaScript to your HTML just like you add
CSS; that is, you just add it inline with the
appropriate <script> tags around it.

Now, like CSS, you can also place your
JavaScript in files that are external to your
HTML.

Let’s first get this serious business application
into a page, and then after we’ve thoroughly
tested it, we’ll move the JavaScript out to an
external file.

you are here 4 31

a quick dip into javascript

A Test Drive

<!doctype html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>My First JavaScript</title>

 </head>

 <body>

 <script>

 </script>

 </body>

</html>

Type this in.

Here’s our test run of this code. The code creates
the entire lyrics for the 99 bottles of beer song
and logs the text to the browser’s console.

Here are the <script> tags. At this point you
know that’s where you should put your code.

To download all the code and sample files for this book,
please visit http://wickedlysmart.com/hfjs.

Okay, let’s get some code in the browser... follow the instructions below and get your
serious business app launched! You’ll see our result below:

1

2

Check out the HTML below; that’s where your JavaScript’s going to go. Go ahead
and type in the HTML and then place the JavaScript from two pages back in between
the <script> tags. You can use an editor like Notepad (Windows) or TextEdit (Mac),
making sure you are in plain text mode. Or, if you have a favorite HTML editor, like
Dreamweaver, Coda or WebStorm, you can use that too.

Save the file as “index.html”.

3 Load the file into your browser. You can either drag the file
right on top of your browser window, or use the File > Open
(or File > Open File) menu option in your favorite browser.

4 You won’t see anything in the web page itself because we’re
logging all the output to the console, using console.log. So
open up the browser’s console, and congratulate yourself on
your serious business application.

32 Chapter 1

how to add code to your page

You can place your code inline,
in the <head> element. The most
common way to add code to your pages is
to put a <script> element in the <head>.
Sure, it makes your code easy to find
and seems to be a logical place for
your code, but it’s not always the
best place. Why? Read on…

How do I add code to my page? (let me count the ways)
You already know you can add the <script> element with your JavaScript code to the <head> or
<body> of your page, but there are a couple of other ways to add your code to a page. Let’s check out all
the places you can put JavaScript (and why you might want to put it one place over another):

Despite evidence
to the contrary, I

still think the <head> is a
great place for code.

Or, you can add your
code inline in the body
of the document. To do
this, enclose your JavaScript
code in the <script> element
and place it in the <body> of
your page (typically at the end of
the body).

This is a little better. Why? When
your browser loads a page, it loads
everything in your page’s <head>
before it loads the <body>. So, if
your code is in the <head>, users might
have to wait a while to see the page. If
the code is loaded after the HTML in the
<body>, users will get to see the page
content while they wait for the code to
load.

Still, is there a better way? Read on…

Or, put your code in its own file
and link to it from the <head>.

This is just like linking to a CSS file. The
only difference is that you use the

src attribute of the <script> tag to
specify the URL to your JavaScript

file.

When your code is in an external
file, it’s easier to maintain
(separately from the HTML)
and can be used across
multiple pages. But this
method still has the drawback
that all the code needs to be
loaded before the body of the
page. Is there a better way?
Read on…

Finally, you can link to
an external file in the
body of your page. Ahhh,

the best of both worlds. We have a
nice, maintainable JavaScript file that

can be included in any page, and it’s
referenced from the bottom of the body
of the page, so it’s only loaded after the
body of the page. Not bad.

Your HTML page

<head>
<script>
 statement;
</script>

<script src=”mycode.js”></script>

<script>
 statement;
 statement;
</script>

<body>

<script src=”somecode.js”></script>

you are here 4 33

a quick dip into javascript

<!doctype html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>My First JavaScript</title>

 </head>

 <body>

 <script>

 var word = "bottles";

 var count = 99;

 while (count > 0) {

 console.log(count + " " + word + " of beer on the wall");

 console.log(count + " " + word + " of beer,");

 console.log("Take one down, pass it around,");

 count = count - 1;

 if (count > 0) {

 console.log(count + " " + word + " of beer on the wall.");

 } else {

 console.log("No more " + word + " of beer on the wall.");

 }

 }

 </script>

 </body>

</html>

Going separate ways hurts, but we know we have to do it. It’s time to take your
JavaScript and move it into its own file. Here’s how you do that…

We’re going to have to separate you two

1

Now create a new file named “code.js” in your editor, and place the
code into it. Then save “code.js”.

2

Open index.html and select all the code; that is, everything
between the <script> tags. Your selection should look like this:

Select just the code, not the <script> tags;
you won’t need those where you’re going...

code.js

34 Chapter 1

external javascript code

3 Now we need to place a reference to the “code.js” file in
“index.html” so that it’s retrieved and loaded when the page
loads. To do that, delete the JavaScript code from “index.html”,
but leave the <script> tags. Then add a src attribute to your
opening <script> tag to reference “code.js”.

4 That’s it, the surgery is complete. Now
you need to test it. Reload your

“index.html” page and you should see
exactly the same result as before. Note
that by using a src=“code.js”, we’re
assuming that the code file is in the same
directory as the HTML file.

You should get the same result as
before. But now your HTML and
JavaScript are in separate files.
Doesn’t that just feel cleaner, more
manageable, more stress-free already?

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>My First JavaScript</title>
 </head>
 <body>
 <script src="code.js">

 </script>
 </body>
</html>

Where your code was.

Use the src attribute of the <script>
element to link to your JavaScript file.

Believe it or not we still need the ending <script> tag, even if
there is no code between the two tags.

you are here 4 35

a quick dip into javascript

You know how to use the <script> element to add code to your page, but just
to really nail down the topic, let’s review the <script> element to make sure we
have every detail covered:

Anatomy of a Script Element

<script type="text/javascript" >

 alert("Hello world!");

</script>

The <script>
opening tag.

The type attribute tells the browser you’re writing JavaScript. The thing
is, browsers assume you’re using JavaScript if you leave it off. So, we
recommend you leave it off, and so do the people who write the standards.

Don’t forget the right
bracket on the opening tag.

Everything between the script tags
must be valid JavaScript.

You must end the script with a closing
</script> tag, always!

Add a src attribute to specify
the URL of the JavaScript file.

<script src="myJavaScript.js" >

</script>

And when you are referencing a separate JavaScript file from your HTML, you’ll use the
<script> element like this:

Use “.js” as the extension
on JavaScript files.

When referencing a separate JavaScript
file, you don’t put any JavaScript in the
content of the <script> element.

Again, don’t forget the closing </script> tag! You need it even when you’re linking to an external file.

You can’t use inline and external together.
If you try throwing some quick code in between those <script> tags when you’re already using a src attribute, it won’t work. You’ll need two separate <script> elements.
 <script src="goodies.js">
 var = "quick hack";

 </script> WRONG

36 Chapter 1

interview with javascript

Head First: Welcome JavaScript. We know you’re super-
busy out there, working on all those web pages, so we’re
glad you could take time out to talk to us.

JavaScript: No problem. And, I am busier than ever
these days; people are using JavaScript on just about every
page on the Web nowadays, for everything from simple
menu effects to full blown games. It’s nuts!

Head First: That’s amazing given that just a few years
ago, someone said that you were just a “half-baked,
wimpy scripting language” and now you’re everywhere.

JavaScript: Don’t remind me. I’ve come a long way
since then, and many great minds have been hard at work
making me better.

Head First: Better how? Seems like your basic language
features are about the same…

JavaScript: Well, I’m better in a couple of ways. First
of all, I’m lightning fast these days. While I’m considered
a scripting language, now my performance is close to that
of native compiled languages.

Head First: And second?

JavaScript: My ability to do things in the browser has
expanded dramatically. Using the JavaScript libraries
available in all modern browsers you can find out your
location, play video and audio, paint graphics on your
web page and a lot more. But if you wanna do all that you
have to know JavaScript.

Head First: But back to those criticisms of you, the
language. I’ve heard some not so kind words… I believe
the phrase was “hacked up language.”

JavaScript: I’ll stand on my record. I’m pretty
much one of, if not the most widely used languages in
the world. I’ve also fought off many competitors and
won. Remember Java in the browser? Ha, what a joke.
VBScript? Ha. JScript? Flash?! Silverlight? I could go on
and on. So, tell me, how bad could I be?

Head First: You’ve been criticized as, well, “simplistic.”

JavaScript: Honestly, it’s my greatest strength. The
fact that you can fire up a browser, type in a few lines of
JavaScript and be off and running, that’s powerful. And
it’s great for beginners too. I’ve heard some say there’s no
better beginning language than JavaScript.

Head First: But simplicity comes at a cost, no?

JavaScript: Well that’s the great thing, I’m simple in the
sense you can get a quick start. But I’m deep and full of
all the latest modern programming constructs.

Head First: Oh, like what?

JavaScript: Well, for example, can you say dynamic
types, first-class functions and closures?

Head First: I can say it but I don’t know what they are.

JavaScript: Figures… that’s okay, if you stay with the
book you will get to know them.

Head First: Well, give us the gist.

JavaScript: Let me just say this, JavaScript was built
to live in a dynamic web environment, an exciting
environment where users interact with a page, where
data is coming in on the fly, where many types of
events happen, and the language reflects that style of
programming. You’ll get it a little more a bit later in the
book when you understand JavaScript more.

Head First: Okay, to hear you tell it, you’re the perfect
language. Is that right?

JavaScript tears up…

JavaScript: You know, I didn’t grow up within the ivy-
covered walls of academia like most languages. I was born
into the real world and had to sink or swim very fast in
my life. Given that, I’m not perfect; I certainly have a few
“bad parts.”

Head First with a slight Barbara Walters smile:
We’ve seen a new side of you today. I think this merits
another interview in the future. Any parting thoughts?

JavaScript: Don’t judge me by my bad parts, learn the
good stuff and stick with that!

JavaScript Exposed
This week’s interview:
Getting to know JavaScript

you are here 4 37

a quick dip into javascript

 � JavaScript is used to add behavior
to web pages.

 � Browser engines are much faster at
executing JavaScript than they were
just a few years ago.

 � Browsers begin executing JavaScript
code as soon as they encounter the
code in the page.

 � Add JavaScript to your page with the
<script> element.

 � You can put your JavaScript inline in
the web page, or link to a separate
file containing your JavaScript from
your HTML.

 � Use the src attribute in the <script>
tag to link to a separate JavaScript
file.

 � HTML declares the structure and
content of your page; JavaScript
computes values and adds behavior
to your page.

 � JavaScript programs are made up of
a series of statements.

 � One of the most common JavaScript
statements is a variable declaration,
which uses the var keyword to
declare a new variable and the
assignment operator, =, to assign a
value to it.

 � There are just a few rules and
guidelines for naming JavaScript
variables, and it’s important that you
follow them.

 � Remember to avoid JavaScript
keywords when naming variables.

 � JavaScript expressions compute
values.

 � Three common types of expressions
are numeric, string and boolean
expressions.

 � if/else statements allow you to make
decisions in your code.

 � while/for statements allow you to
execute code many times by looping.

 � Use console.log instead of alert to
display messages to the Console.

 � Console messages should be used
primarily for troubleshooting as users
will most likely never see console
messages.

 � JavaScript is most commonly found
adding behavior to web pages, but is
also used to script applications like
Adobe Photoshop, OpenOffice and
Google Apps, and is even used as a
server-side programming language.

38 Chapter 1

javascript crossword

JavaScript cross
Time to stretch your dendrites with a puzzle to
help it all sink in.

1 2 3

4

5 6

7

8 9

10 11 12

13

14

15

16

Across
2. To link to an external JavaScript file from

HTML, you need the _______ attribute for
your <script> element.

6. To avoid embarrassing naming mistakes, use
__________ case.

7. JavaScript adds _______________ to your
web pages.

10. There are 99 _____________ of beer on
the wall.

13. Each line of JavaScript code is called a
_______________.

14. 3 + 4 is an example of an _____________.
15. All JavaScript statements end with a

___________.
16. Use _____________ to troubleshoot your

code.

Down
1. Do things more than once in a JavaScript

program with the _________ loop.
3. JavaScript variable names are _________

sensitive.
4. To declare a variable, use this keyword.
5. Variables are used to store these.
6. Each time through a loop, we evaluate a

______________ expression.
8. Today's JavaScript runs a lot

________________ than it used to.
9. The if/else statement is used to make a

____________.
11. You can concatenate _______________

together with the + operator.
12. You put your JavaScript inside a

______________ element.

ACROSS
2. To link to an external JavaScript file from HTML, you
need the _______ attribute for your <script> element.
6. To avoid embarrassing naming mistakes, use

__________ case.
7. JavaScript adds _______________ to your web pages.
10. There are 99 _____________ of beer on the wall.
13. Each line of JavaScript code is called a
_______________.
14. 3 + 4 is an example of an _____________.
15. All JavaScript statements end with a ___________.
16. Use _____________ to troubleshoot your code.

DOWN
1. Do things more than once in a JavaScript program with
the _________ loop.
3. JavaScript variable names are _________ sensitive.
4. To declare a variable, use this keyword.
5. Variables are used to store these.
6. Each time through a loop, we evaluate a

______________ expression.
8. Today's JavaScript runs a lot

________________ than it used to.
9. The if/else statement is used to make a

____________.
11. You can concatenate _______________
together with the + operator.
12. You put your JavaScript inside a ______________
element.

you are here 4 39

a quick dip into javascript

\\ Movie Night

var zip code = 98104;

var joe'sFavoriteMovie = Forbidden Planet;

var movieTicket$ = 9;

if (movieTicket$ >= 9) {

 alert("Too much!");

} else {

 alert("We're going to see " + joe'sFavoriteMovie);

}

// Test for jokes

var joke = "JavaScript walked into a bar....';

var toldJoke = "false";

var $punchline =

 "Better watch out for those semi-colons."

var %entage = 20;

var result

if (toldJoke == true) {

 Alert($punchline);

} else

 alert(joke);

}

It’s okay, but not recommended, to begin a variable with a $.

Can’t use % in variable names.

Comments should begin with // not \\.
No spaces allowed in variable names.

No quotes allowed
in variable names.

This if/else doesn’t work
because of the invalid variable
name here.

Below, you’ll find JavaScript code
with some mistakes in it. Your job
is to play like you’re the browser
and find the errors in the code.

After you’ve done the
exercise look at the
end of the chapter to
see if you found them

all. Here's our solution.

A

B

BE the Browser Solution

Don't forget to end
statements with a semi-colon!

Another missing semi-colon.

Should be alert, not Alert.
JavaScript is case-sensitive.

Don’t put quotes around boolean
values unless you really want a string.

Delimit your strings with two double quotes
(“) or two single quotes (‘). Don’t mix!

But we do need quotes
around the string
“Forbidden Planet”.

We’re missing an opening brace here.

40 Chapter 1

exercise solutions

(9 / 5) * temp + 32

color == "orange"

name + ", " + "you've won!"

yourLevel > 5

(level * points) + bonus

color != "orange"

1000 + "108"

What is the result when temp is 10? __________

Is this expression true or false when color has the value
“pink”? __________
Or, has the value “orange”? __________

What value does this compute to when name is “Martha”?

When yourLevel is 2, what does this evaluate to? ________

When yourLevel is 5, what does this evaluate to? ________

When yourLevel is 7, what does this evaluate to? ________

Okay, level is 5, points is 30,000 and bonus is 3300. What
does this evaluate to? ________

Is this expression true or false when color has the value
“pink”? __________

Get out your pencil and let’s put some expressions through their paces. For each expression below, compute
its value and write in your answer. Yes, WRITE IN... forget what your Mom told you about writing in books and
scribble your answer right in this book! Here’s our solution.

Serious Coding
Did you notice that the =
operator is used in assignments,

while the == operator tests for equality?
That is, we use one equal sign to assign
values to variables. We use two equal
signs to test if two values are equal to
each other. Substituting one for the other is a common coding mistake.

Can you say “Celsius to Fahrenheit calculator”?

This tests if the first
value is greater than the
second. You can also use
>= to test if the first
value is greater than or
equal to the second.

The != operator tests if two values
are NOT equal to each other.

Extra CREDIT!

Are there a few possible answers?
Only one is correct. Which would you
choose? ______________________

false
true

50

false
false
true

153300

true

“1000108”

This is a boolean expression. The
== operator tests if two values
are equal to each other.

“Martha, you’ve won!”

you are here 4 41

a quick dip into javascript

Code Magnets Solution
A JavaScript program is all scrambled up on the fridge. Can you put the magnets back in the
right places to make a working JavaScript program to produce the output shown below?.
Here’s our solution.

var name = "Joe";

Your unscrambled program
should produce this output.

Here are the unscrambled magnets!

var i = 0;

while (i < 2) {

 document.write("Happy Birthday to you.
");

 i = i + 1;

}

document.write("Happy Birthday to you.
");

document.write("Happy Birthday dear " + name + ",
");

42 Chapter 1

exercise solutions

JavaScript
Cross
Solution

W
1

S
2

R C
3

H A
I V

4
S

L V
5

C
6

A M E L
B
7

E H A V I O R
L N F

8
D
9

U D A E
B
10

O T T L E S
11

I S S
12

C
S
13

T A T E M E N T C I
R I E

14
X P R E S S I O N

S
15

E M I C O L O N R I I
N N P O
G A T N

C
16

O N S O L E L O G

Across
2. To link to an external JavaScript file from

HTML, you need the _______ attribute for
your <script> element. [SRC]

6. To avoid embarrassing naming mistakes, use
__________ case. [CAMEL]

7. JavaScript adds _______________ to your
web pages. [BEHAVIOR]

10. There are 99 _____________ of beer on
the wall. [BOTTLES]

13. Each line of JavaScript code is called a
_______________. [STATEMENT]

14. 3 + 4 is an example of an _____________.
[EXPRESSION]

15. All JavaScript statements end with a
___________. [SEMICOLON]

16. Use _____________ to troubleshoot your
code. [CONSOLELOG]

Down
1. Do things more than once in a JavaScript

program with the _________ loop. [WHILE]
3. JavaScript variable names are _________

sensitive. [CASE]
4. To declare a variable, use this keyword.

[VAR]
5. Variables are used to store these. [VALUES]
6. Each time through a loop, we evaluate a

______________ expression.
[CONDITIONAL]

8. Today's JavaScript runs a lot
________________ than it used to.
[FASTER]

9. The if/else statement is used to make a
____________. [DECISION]

11. You can concatenate _______________
together with the + operator. [STRINGS]

All our methods of communication have come to the party with masks on. Can you help us unmask
each one? Match the descriptions on the right to the names on the left. Here’s our solution:

document.write

console.log

alert

document object model

I ’ l l stop your user in his tracks and deliver a short
message. The user has to click “ok” to go further.

I can insert a little HTML and text into a document.
I’m not the most elegant way to get a message to
your users, but I work on every browser.

Using me you can totally control a web page: get
values that a user typed in, alter the HTML or the style,
or update the content of your page.

I’m just here for simple debugging purposes. Use
me and I can write out information to a special
developer ’s console.

SOlUTion

this is a new chapter 43

2 writing real code

Going further

You already know about variables, types, expressions...
we could go on. The point is, you already know a few things about

JavaScript. In fact, you know enough to write some real code. Some code that

does something interesting, some code that someone would want to use. What

you’re lacking is the real experience of writing code, and we’re going to remedy

that right here and now. How? By jumping in head first and coding up a casual

game, all written in JavaScript. Our goal is ambitious but we’re going to take it one

step at a time. Come on, let’s get this started, and if you want to launch the next

casual startup, we won’t stand in your way; the code is yours.

Pffft... To get any further
with me you’re going to have

to get some real experience
writing code.

Yeah, I’ve done a little
JavaScript coding.

44 Chapter 2

building a battleship game

Our first attempt...

For our first attempt we’re going to start simpler than
the full-blown 7x7 graphical version with three ships.
Instead we’re going to start with a nice 1-D grid with
seven locations and one ship to find. It will be crude,
but our focus is on designing the basic code for the
game, not the look and feel (at least for now).

Don’t worry; by starting with a simplified version of
the game, you get a big head start on building the full
game later. This also gives us a nice chunk to bite off
for your first real JavaScript program (not counting
the Serious Business Application from Chapter 1,
of course). So, we’ll build the simple version of the
game in this chapter, and get to the deluxe version
later in the book after you’ve learned a bit more
about JavaScript.

... a simplified Battleship

It’s you against the browser: the browser hides ships
and your job is to seek them out and destroy them.
Of course, unlike the real Battleship game, in this
one you don’t place any ships of your own. Instead,
your job is to sink the computer’s ships in the fewest
number of guesses.

Goal: Sink the browser’s ships in the fewest number
of guesses. You’re given a rating, based on how well
you perform.

Setup: When the game program is launched, the
computer places ships on a virtual grid. When that’s
done, the game asks for your first guess.

How you play: The browser will prompt you to
enter a guess and you’ll type in a grid location. In
response to your guess, you’ll see a result of “Hit”,
“Miss”, or “You sank my battleship!” When you sink
all the ships, the game ends by displaying your rating.

Let’s build a Battleship game

Here’s what we’re shooting for: a nice 7x7
grid with three ships to hunt down. Right now
we’re going to start a little simpler, but once
you know a bit more JavaScript we’ll complete
the implementation so it looks just like this,
complete with graphics and everything...we’ll
leave the sound to you as extra credit.

Instead of a 7x7 grid, like the one above,
we’re going to start with just a 1x7 grid.
And, we’ll worry about just one ship for now.

Notice that each ship
takes up three grid
locations (similar to the
real board game).

you are here 4 45

writing real code

First, a high-level design

We know we’ll need variables, and some numbers and
strings, and if statements, and conditional tests, and
loops... but where and how many? And how do we put
it all together? To answer these questions, we need more
information about what the game should do.

First, we need to figure out the general flow of the game.
Here’s the basic idea:

1 User starts the game

2 Game play begins
Repeat the following until the
battleship is sunk:

A

A Game places a battleship at a
random location on the grid.

Prompt user for a guess
(“2”, “0”, etc.)

B Check the user’s guess against
the battleship to look for a
hit, miss or sink.

3 Game finishes
Give the user a rating based on
the number of guesses.

Start

Game set-up

Get user
guess

Check
guess

hitmiss Mark ship as
hit

sunk

Mark ship
as sunk

Display user
score/rating

Game
over

Whoa. A real flowchart.

Now we have a high-level idea of the kinds of
things the program needs to do. Next we’ll figure
out a few more details for the steps.

1

A

2
A

B

3

A circle means
start or finis

h

A rectangle is
used to repre

sent

an action

A diamond
represents a
decision point.

46 Chapter 2

designing the game

Sample game interaction

1
Game starts, and creates one battleship
and gives it a location on three cells in the
single row of seven cells.

The locations are just integers; for
example, 1,2,3 are the cell locations in this
picture:

2 Game play begins. Prompt user for a guess:

3 Game finishes when all three cells have
been hit and our number of hits variable
value is 3. We tell the user how many
guesses it took to sink the ship.

Check to see if user’s input hit any of the
ship’s three cells. Keep track of how many
hits there are in a variable.

0 1 2 3 4 5 6

We have a pretty good idea about how this
game is going to work from the high-level
design and professional looking flowchart, but
let’s nail down just a few more of the details
before we begin writing the code.

Representing the ships

For one thing, we can start by figuring out
how to represent a ship in our grid. Keep
in mind that the virtual grid is… well, virtual.
In other words, it doesn’t exist anywhere in
the program. As long as both the game and
the user know that the battleship is hidden
in three consecutive cells out of a possible
seven (starting at zero), the row itself doesn’t
have to be represented in code. You might
be tempted to build something that holds all
seven locations and then to try to place the
ship in those locations. But, we don’t need to.
We just need to know the cells where the ship
is located, say, at cells 1, 2 and 3.

Getting user input

What about getting user input? We can do
that with the prompt function. Whenever we
need to get a new location from the user, we’ll
use prompt to display a message and get the
input, which is just a number between 0 and 6,
from the user.

Displaying the results

What about output? For now, we’ll continue
to use alert to show the output of the game.
It’s a bit clunky, but it’ll work. (For the real
game, later in the book, we’ll be updating the
web page instead, but we’ve got a way to go
before we get there.)

A few more details...

A

B

you are here 4 47

writing real code

Working through the Pseudocode

We need an approach to planning and writing our code. We’re going to start by
writing pseudocode. Pseudocode is halfway between real JavaScript code and a plain
English description of the program, and as you’ll see, it will help us think through how
the program is going to work without fully having to develop the real code.

In this pseudocode for Simple Battleship, we’ve included a section that describes the
variables we’ll need, and a section describing the logic of the program. The variables
will tell us what we need to keep track of in our code, and the logic describes what the
code has to faithfully implement to create the game.

DECLARE three variables to hold the location of each cell of the ship. Let’s call them
location1, location2 and location3.

DECLARE a variable to hold the user’s current guess. Let’s call it guess.

DECLARE a variable to hold the number of hits. We’ll call it hits and set it to 0.

DECLARE a variable to hold the number of guesses. We’ll call it guesses and set it to 0.

DECLARE a variable to keep track of whether the ship is sunk or not. Let’s call it isSunk
and set it to false.

LOOP: while the ship is not sunk

 GET the user’s guess

 COMPARE the user’s input to valid input values

 IF the user’s guess is invalid,

 TELL user to enter a valid number

 ELSE

 ADD one to guesses

 IF the user’s guess matches a location

 ADD one to the number of hits

 IF number of hits is 3

 SET isSunk to true

 TELL user “You sank my battleship!”

 END IF

 END IF

 END ELSE

END LOOP

TELL user stats

The variables we need.

And here’s the logic.

It’s not JavaScript, but you
can probably already see how
to begin implementing this
logic in code.

Notice that we’re using indentation to
help make the pseudocode easier to read.
We’ll be doing that in the real code too.

48 Chapter 2

battleship exercise

Let’s say our virtual grid looks like this:

And we’ve represented the ship locations using our location variables, like this:

location1 = 3;

location2 = 4;

location3 = 5;

Use the following sequence as your test user input:

1, 4, 2, 3, 5

Now, using the pseudocode on the previous page, walk through each step of code and
see how this works given the user input. Put your notes below. We’ve begun the exercise
for you below. If this is your first time walking through pseudocode, take your time and
see how it all works.

location1 location2 location3 guess guesses hits isSunk

3 4 5 0 0 false
3 4 5 1 1 0 false

0 1 2 3 4 5 6

The first row shows the initial values of the variables, before the user enters their first guess. We’re not initializing the variable guess, so its value is undefined.

If you need a hint, take
a quick peek at our
answer at the end of
the chapter.

you are here 4 49

writing real code

Flex those dendrites.

This is thinking ahead a bit, but what kind of code do you think it would take to generate
a random location for the ship each time you load the page? What factors would you
have to take into account in the code to correctly place a ship? Feel free to scribble
some ideas here.

Here’s what you’ll see when you load
the page. We need to write some
code to get the game going!

<!doctype html>

<html lang="en">

 <head>

 <title>Battleship</title>

 <meta charset="utf-8">

 </head>

 <body>

 <h1>Play battleship!</h1>

 <script src="battleship.js"></script>

 </body>

</html>

Oh, before we go any further,
don’t forget the HTML!
You’re not going to get very far without some HTML to link to your
code. Go ahead and type the markup below into a new file named
“battleship.html”. After you’ve done that we’ll get back to writing code.

The HTML for the Battleship game is super simple;
we just need a page that links to the JavaScript
code, and that’s where all the action happens.

We’re linking to the JavaScript at the bottom of the <body> of the page, so the page is loaded by the time the browser starts executing the code in “battleship.js”.

50 Chapter 2

coding the game

Writing the Simple Battleship code
We’re going to use the pseudocode as a blueprint for our
real JavaScript code. First, let’s tackle all the variables we
need. Take another look at our pseudocode to check out
the variables we need:

DECLARE three variables to hold the location of each cell
of the ship. Let’s call them location1, location2 and
location3.

DECLARE a variable to hold the user’s current guess. Let’s
call it guess.

DECLARE a variable to hold the number of hits. We’ll call it
hits and set it to 0.

DECLARE a variable to hold the number of guesses. We’ll
call it guesses and set it to 0.

DECLARE a variable to keep track of whether the ship is
sunk or not. Let’s call it isSunk and set it to false.

var location1 = 3;

var location2 = 4;

var location3 = 5;

var guess;

var hits = 0;

var guesses = 0;

var isSunk = false;

Let’s get these variables into a JavaScript file. Create a
new file named “battleship.js” and type in your variable
declarations like this:

We need three variables to
hold the ship’s location.

And three more (guess, hits
and guesses) to deal with
the user’s guess.

And another to track whether or
not the ship is sunk.

Here are our three location variables. We’ll go ahead
and set up a ship at locations 3, 4 and 5, just for now.

The variable guess won’t have a value until
the user makes a guess. Until then it will
have the value undefined.

We’ll assign initial
values of 0 to both
hits and guesses.

Finally, the isSunk variable gets
a value of false. We’ll set this to
true when we’ve sunk the ship.

We’ll come back later and write some
code to generate a random location for
the ship to make it harder for the user.

Serious Coding
If you don’t provide an initial
value for a variable, then

JavaScript gives it a default value of
undefined. Think of the value undefined
as JavaScript’s way of saying “this variable hasn’t been given a value yet.” We’ll be
talking more about undefined and some
other strange values a little later.

you are here 4 51

writing real code

LOOP: while the ship is not sunk

 GET the user’s guess

 COMPARE the user’s input to valid input values

 IF the user’s guess is invalid,

 TELL user to enter a valid number

 ELSE

 ADD one to guesses

 IF the user’s guess matches a location

 ADD one to the number of hits

 IF number of hits is 3

 SET isSunk to true

 TELL user “You sank my battleship!”

 END IF

 END IF

 END ELSE

END LOOP

TELL user stats

Now let’s write the game logic
We’ve got the variables out of the way, so let’s dig into the actual
pseudocode that implements the game. We’ll break this into a few
pieces. The first thing you’re going to want to do is implement the
loop: it needs to keep looping while the ship isn’t sunk. From there
we’ll take care of getting the guess from the user and validating
it—you know, making sure it really is a number between 0 and 6—
and then we’ll write the logic to check for a hit on a ship and to see
if the ship is sunk. Last, we’ll create a little report for the user with
the number of guesses it took to sink the ship.

STEP1: Set up the loop,
get the user’s input and
validate it.

STEP2: Check the guess.
Is it a hit? A miss?

Create loop and get user guessCheck user guess
Check if ship has been sunk
Display stats to user

To Do:

STEP3: Check to see if
the ship is sunk.

STEP4: Handle the
final message to the user.

52 Chapter 2

the game input loop

var location1 = 3;

var location2 = 4;

var location3 = 5;

var guess;

var hits = 0;

var guesses = 0;

var isSunk = false;

while (isSunk == false) {

 guess = prompt("Ready, aim, fire! (enter a number from 0-6):");

}

LOOP: while the ship
is not sunk

Step One: setting up the loop, getting some input

DECLARE variables

Now we’re going to begin to translate the logic of our game into actual JavaScript
code. There isn’t a perfect mapping from pseudocode to JavaScript, so you’ll see a
few adjustments here and there. The pseudocode gives us a good idea of what the
code needs to do, and now we have to write the JavaScript code that can do the how.

Let’s start with all the code we have so far and then we’ll zero in on just the parts
we’re adding (to save a few trees here and there, or electrons if you’re reading the
digital version):

We’ve already covered these,
but we’re including them
here for completeness.

Here’s the start of the loop. While
the ship isn't sunk, we're still in the
game, so keep looping.

Create loop and get user guess

Check user guess

Check if ship has been sunk

Display stats to user

GET the user’s guess

Remember, while uses a conditional test to
determine whether to keep looping. In this
case we're testing to make sure that isSunk
is still false. We'll set it to true as soon as
the ship is sunk.

Each time we go through the while loop we're
going to ask the user for a guess. To do that
we use the prompt built-in function. More on
that on the next page...

you are here 4 53

writing real code

How prompt works

guess = prompt("Ready, aim, fire! (enter a number from 0-6):");

Here we're assigning the result
of the prompt function to
the guess variable.

The prompt function's job is to get input
from the user. Depending on your device,
that usually happens in a dialog box.

Once the prompt function obtains input from the user, it
returns that input to your code. In this case the input, in the
form of a string, is assigned to the variable guess.

The browser provides a built-in function you can use to get input from the user,
named prompt. The prompt function is a lot like the alert function you’ve already
used—prompt causes a dialog to be displayed with a string that you provide, just like
alert—but it also provides the user with a place to type a response. That response,
in the form of a string, is then returned as a result of calling the function. Now, if the
user cancels the dialog or doesn’t enter anything, then null is returned instead.

5

"5"

You provide prompt with a string,
which is used as instructions to
your user in the dialog box.

You might be tempted to try this code now...

...but don’t. If you do, your browser will start an infinite loop of asking you

for a guess, and then asking you for a guess, and so on, without any

means of stopping the loop (other than using your operating system to

force the browser process to stop).

54 Chapter 2

verifying user input

Checking the user’s guess
If you look at the pseudocode, to check the user’s guess we need to first make sure the
user has entered a valid input. If so, then we also check to see if the guess was a hit
or miss. We’ll also want to make sure we appropriately update the guesses and hits
variables. Let’s get started by checking the validity of the user’s input, and if the input is
valid, we’ll increment the guesses variable. After that we’ll write the code to see if the
user has a hit or miss.

Create loop and get user guess

Check user guess

Check if ship has been sunk

Display stats to user

// Variable declarations go here

while (isSunk == false) {

 guess = prompt("Ready, aim, fire! (enter a number from 0-6):");

 if (guess < 0 || guess > 6) {

 alert("Please enter a valid cell number!");

 } else {

 guesses = guesses + 1;

 }

}

We check validity by
making sure the guess is
between zero and six.

If the guess isn't valid, we'll
tell the user with an alert.

And if the guess is valid, go ahead and
add one to guesses so we can keep track
of how many times the user has guessed.

This is really just two small tests put together. The first test checks if guess is less than zero.

Try to read this like it's English: this conditional is true if the user’s guess is less than
zero OR the user’s guess is greater than six. If either is true, then the input is invalid.

And this one checks to see if
guess is greater than six.

And this, which we call the OR operator, combines
the two tests so that if either test is true, then
the entire conditional is true. If both tests are
false, then the statement is false, and the guess
is between 0 and 6, which means it’s valid.

Let’s look a little more closely at the validity test. You know we’re checking to see that the
guess is between zero and six, but how exactly does this conditional test that? Let’s break
it down:

if (guess < 0 || guess > 6) {

you are here 4 55

writing real code

Two-minute Guide to
Boolean Operators

A boolean operator is used in a
boolean expression, which results
in a true or false value. There are
two kinds of boolean operators:
comparison operators and logical
operators.

Comparison Operators

Comparison operators compare
two values. Here are some common
comparison operators:

<

>

==

===

<=

>=

!=

means “less than”

means “greater than”

means “equal to”

means “exactly equal to” (we’ll
come back to this one later!)

means “less than or equal to”

means “greater than or equal to”

means “not equal to”

Logical Operators

Logical operators combine two
boolean expressions to create one
boolean result (true or false). Here
are two logical operators:

||

&&

means OR. Results in true if either
of the two expressions is true.

means AND. Results in true if both
of the two expressions are true.

means NOT. Results in true if the
expression is false.

!

Another logical operator is NOT,
which acts on one boolean
expression (rather than two):

Q: I noticed there is a cancel
button on the prompt dialog box.
What gets returned from the prompt
function if the user hits cancel?

A: If you click cancel in the prompt
dialog box then prompt returns
the value null rather than a string.
Remember that null means “no value”,
which is appropriate in this case
because you’ve cancelled without
entering a value. We can use the fact
that the value returned from prompt is
null to check to see if the user clicked
cancel, and if they did, then we could,
say, end the game. We’re not doing that
in our code, but keep this idea in the
back of your mind as we might use it
later in the book.

Q: You said that prompt always
returns a string. So how can we
compare a string value, like “0” or

“6”, to numbers, like 0 and 6?

A: In this situation, JavaScript tries
to convert the string in guess to a
number in order to do the comparisons,
guess < 0 and guess > 6. As long
as you enter only a number, like 4,
JavaScript knows how to convert the
string “4” to the number 4 when it needs
to. We’ll come back to the topic of type
conversion in more detail later.

Q: What happens if the user
enters something that isn't a number
into the prompt? Like “six” or

“quit”?

A: In that case, JavaScript won’t be
able to convert the string to a number
for the comparison. So, you’d be
comparing “six” to 6 or “quit” to 6, and
that kind of comparison will return false,
which will lead to a MISS. In a more
robust version of battleship, we’ll check
the user input more carefully and make
sure they’ve entered a number first.

Q: With the OR operator, is it true
if only one or the other is true, or can
both be true?

A: Yes, both can be true. The result
of the OR operator (||) is true if either of
the tests is true, or if both are true. If
both are false, then the result is false.

Q: Is there an AND operator?

A: Yes! The AND operator (&&)
works similarly to OR, except that the
result of AND is true only if both tests
are true.

Q: What’s an infinite loop?

A: Great question. An infinite loop is
one of the many problems that plague
programmers. Remember that a loop
requires a conditional test, and the loop
will continue as long as that conditional
test is true. If your code never does
anything to change things so that the
conditional test is false at some point,
the loop will continue forever. And ever.
Until you kill your browser or reboot.

56 Chapter 2

determining hits

So, do we have a hit?
This is where things get interesting—the user’s taken a guess at the ship’s
location and we need to write the code to determine if that guess has hit the
ship. More specifically, we need to see if the guess matches one of the locations
of the ship. If it does, then we’ll increment the hits variable.

Here’s a first stab at writing the code for the hit detection; let’s step through it:

if (guess == location1) {

 hits = hits + 1;

} else if (guess == location2) {

 hits = hits + 1;

} else if (guess == location3) {

 hits = hits + 1;

}

If the guess is at location1, then
we hit the ship, so increment the
hits variable by one.
Otherwise, if the guess is location2,
then do the same thing.

Finally, if the guess is location3, then we
need to increment the hits variable.

And if none of these are true, then the
hits variable is never incremented.

What do you think of this first attempt to write the code to detect when
a ship is hit? Does it look more complex than it needs to be? Are we
repeating code in a way that seems a bit, well, redundant? Could we
simplify it? Using what you know of the || operator (that is, the boolean OR
operator), can you simplify this code? Make sure you check your answer at
the end of the chapter before moving on.

Create loop and get user guess

Check user guess

Check if ship has been sunk

Display stats to user

Notice we’re using indentation for the code
in each if/else block. This makes your code
easier to read, especially when you’ve got
lots of blocks nested inside blocks.

you are here 4 57

writing real code

// Variable declarations go here

while (isSunk == false) {

 guess = prompt("Ready, aim, fire! (enter a number from 0-6):");

 if (guess < 0 || guess > 6) {

 alert("Please enter a valid cell number!");
 } else {

 guesses = guesses + 1;

 if (guess == location1 || guess == location2 || guess == location3) {

 hits = hits + 1;

 }

 }

}

LOOP: while the ship
is not sunk

Adding the hit detection code

Let’s put everything together from the previous couple of pages:

If the guess matches one of the ship’s
locations we increment the hits counter.

The user’s guess looks valid, so let’s
increase the number of guesses by one.

We’ve combined the three conditionals into one if
statement using || (OR). So read it like this: “If guess
is equal to location1 OR guess is equal to location2 OR
guess is equal to location3, increment hits.”

Hey, you sank my battleship!
We’re almost there; we’ve almost got this game logic nailed down.
Looking at the pseudocode again, what we need to do now is test to
see if we have three hits. If we do, then we’ve sunk a battleship. And,
if we’ve sunk a battleship then we need to set isSunk to true and also
tell the user they’ve destroyed a ship. Let’s sketch out the code again
before adding it in:

 if (hits == 3) {

 isSunk = true;

 alert("You sank my battleship!");

 }

First check to see if
there are three hits.

And if so, set isSunk to true.

And also let the user know!

IF the user’s guess
matches a location

ADD one to the
number of hits

GET the user’s guess

ADD one to guesses

Create loop and get user guess

Check user guess

Check if ship has been sunk

Display stats to user

Create loop and get user guess

Check user guess

Check if ship has been sunk

Display stats to user

Take another look at the while loop
above. What happens when isSunk is true?

Check the user's guess...

58 Chapter 2

notifying the user

LOOP: while the ship
is not sunk

Now let’s add this and the sunk ship detection into the rest of the code:

// Variable declarations go here

while (isSunk == false) {

 guess = prompt("Ready, aim, fire! (enter a number from 0-6):");

 if (guess < 0 || guess > 6) {

 alert("Please enter a valid cell number!");
 } else {

 guesses = guesses + 1;

 if (guess == location1 || guess == location2 || guess == location3) {

 hits = hits + 1;

 if (hits == 3) {

 isSunk = true;

 alert("You sank my battleship!");

 }

 }

 }

}

var stats = "You took " + guesses + " guesses to sink the battleship, " +

 "which means your shooting accuracy was " + (3/guesses);
alert(stats);

IF the user’s guess
matches a location

ADD one to the
number of hits

GET the user’s guess

ADD one to guesses

IF number of hits is 3

Provide some post-game analysis
After isSunk is set to true, the while loop is going to stop looping. That’s right, this
program we’ve come to know so well is going to stop executing the body of the while
loop, and before you know it the game’s going to be over. But, we still owe the user
some stats on how they did. Here’s some code that does that:

var stats = "You took " + guesses + " guesses to sink the battleship, " +

 "which means your shooting accuracy was " + (3/guesses);

alert(stats);
Here we're creating a string that contains a message to the user including the number of guesses they took, along with the accuracy of their shots. Notice that we’re splitting up the string into pieces (to insert the variable guesses, and also to fit the string into multiple lines) using the concatenation operator, +. For now just type this as is, and we’ll explain more about this later.

TELL user stats

Create loop and get user guess

Check user guess

Check if ship has been sunk

Display stats to user

SET isSunk to true

TELL user “You sank
my battleship!”

you are here 4 59

writing real code

Remember we said pseudocode often isn’t perfect? Well we actually left something out of our
original pseudocode: we’re not telling the user if her guess is a HIT or a MISS. Can you insert
these pieces of code in the proper place to correct this?

// Variable declarations go here

while (isSunk == false) {

 guess = prompt("Ready, aim, fire! (enter a number from 0-6):");

 if (guess < 0 || guess > 6) {

 alert("Please enter a valid cell number!");

 } else {

 guesses = guesses + 1;

 if (guess == location1 || guess == location2 || guess == location3) {

 hits = hits + 1;

 if (hits == 3) {

 isSunk = true;

 alert("You sank my battleship!");

 }

 }

 }

}

var stats = "You took " + guesses + " guesses to sink the battleship, " +

 "which means your shooting accuracy was " + (3/guesses);

alert(stats);

alert("HIT!");

alert("MISS");

else { }

Here's the code you'll need to insert.

This is a lot of curly braces to match. If you’re
having trouble matching them, just draw lines right
in the book, to match them up.

60 Chapter 2

putting all the code together

Create loop and get user guess

Check user guess

Check if ship has been sunk

Display stats to user

var location1 = 3;

var location2 = 4;

var location3 = 5;

var guess;

var hits = 0;

var guesses = 0;

var isSunk = false;

while (isSunk == false) {

 guess = prompt("Ready, aim, fire! (enter a number from 0-6):");

 if (guess < 0 || guess > 6) {

 alert("Please enter a valid cell number!");

 } else {

 guesses = guesses + 1;

 if (guess == location1 || guess == location2 || guess == location3) {

 alert("HIT!");

 hits = hits + 1;

 if (hits == 3) {

 isSunk = true;

 alert("You sank my battleship!");

 }

 } else {

 alert("MISS");

 }

 }

}

var stats = "You took " + guesses + " guesses to sink the battleship, " +

 "which means your shooting accuracy was " + (3/guesses);

alert(stats);

And that completes the logic!
Alright! We’ve now fully translated the pseudocode to actual JavaScript code. We even
discovered something we left out of the pseudocode and we’ve got that accounted for
too. Below you’ll find the code in its entirety. Make sure you have this typed in and
saved in “battleship.js”:

you are here 4 61

writing real code

Doing a little Quality Assurance
QA, or quality assurance, is the process of testing software
to find defects. So we’re going to do a little QA on this code.
When you’re ready, load “battleship.html” in your browser
and start playing. Try some different things. Is it working
perfectly? Or did you find some issues? If so list them here.
You can see our test run on this page too.

QA Notes

Jot down anything that doesn't work
the way it should, or that could be
improved.

Then we entered 0,
to get a miss.

But then we get
three hits in a row!

On the third and final hit,
we sink the battleship.

And see that it took 4
guesses to sink the ship with
an accuracy of 0.75.

Here's what our game interaction
looked like.

First we entered an
invalid number, 9.

62 Chapter 2

using boolean operators

Boolean operators allow you to write
more complex statements of logic.

You’ve seen enough conditionals to know how to test,
say, if the temperature is greater than 32 degrees.
Or, that a variable that represents whether an item is
inStock is true. But sometimes we need to test more.
Sometimes we need to know not only if a value is
greater than 32, but also if it’s less than 100. Or, if an
item is inStock, and also onSale. Or that an item is on
sale only on Tuesdays when the user is a VIP member.
So, you see, these conditionals can get complex.

Let’s step through a few to get a better idea of how
they work.

The game logic is pretty
clear to me, except for

the boolean operators. Is that
just giving me a way to combine
conditionals together?

Say we need to test that an item is inStock AND onSale. We could do that
like this:

if (inStock == true) {

 if (onSale == true) {

 // sounds like a bargain!

 alert("buy buy buy!");

 }

}

First, see if the item is in stock...

And, if so, then see if it is on sale.

And if so, then take some
action, like buy a few!

Notice this code is executed only
if both conditionals are true!

We can simplify this code by combining these two conditionals together.
Unlike in Simple Battleship, where we tested if guess < 0 OR guess > 6,
here we want to know if inStock is true AND onSale is true. Let’s see
how to do that...

you are here 4 63

writing real code

if (inStock == true && onSale == true) {

 // sounds like a bargain!

 alert("buy buy buy!");

}

Not only is this code more concise, it's also
more readable. Compare this code with the
code on the previous page to see.

Here’s our AND operator. With AND this combined conditional
is true only if the first part AND the second part are true.

if (inStock == true && (onSale == true || price < 60)) {

 // sounds like a bargain!

 alert("buy buy buy!");

}

Now we’re using both AND and OR in the same conditional expression. This one says: If
an item is in stock AND it’s either on sale, OR the price is less than 60, then buy.

Notice we’re using parentheses to group the conditionals
together so we get the result of the OR first, and then
use that result to compute the result of the AND.

We don’t have to stop there; we can use multiple boolean operators to
combine conditionals in a variety of ways:

We’ve got a whole bunch of boolean expressions that need evaluating below. Fill in the blanks, and then
check your answers at the end of the chapter before you go on.

var temp = 81;

var willRain = true;

var humid = (temp > 80 && willRain == true);

What’s the value of humid?

var guess = 6;

var isValid = (guess >= 0 && guess <= 6);

What’s the value of isValid?

var kB = 1287;
var tooBig = (kB > 1000);
var urgent = true;
var sendFile =
 (urgent == true || tooBig == false);

What’s the value of sendFile?

var keyPressed = "N";

var points = 142;

var level;

if (keyPressed == "Y" ||
 (points > 100 && points < 200)) {

 level = 2;

} else {

 level = 1;

}

What’s the value of level?

64 Chapter 2

boolean operator exercise

if (price < 200 || price > 600) {

 alert("Price is too low or too high! Don't buy the gadget.");

} else {

 alert("Price is right! Buy the gadget.");

}

if (price >= 200 || price <= 600) {

 alert("Price is right! Buy the gadget.");

} else {

 alert("Price is too low or too high! Don't buy the gadget.");

}

Bob

Bill

Bob and Bill, both from accounting, are working on a new price
checker application for their company’s web site. They’ve both
written if/else statements using boolean expressions. Both are
sure they’ve written the correct code. Which accountant is right?
Should these accountants even be writing code? Check your
answer at the end of the chapter before you go on.

you are here 4 65

writing real code

if (inStock) {
 ...

}

Can we talk about your verbosity...
We don’t know how to bring this up, but you’ve been a little verbose in specifying
your conditionals. What do we mean? Take this condition for instance:

if (inStock == true) {
 ...

} And, inStock is a variable that holds a
boolean value of true or false.

We often compare our boolean
variables to true or false to
form our conditional.

As it turns out, that’s a bit of overkill. The whole point of a conditional is that it evaluates to either true or
false, but our boolean variable inStock already is one of those values. So, we don’t need to compare the
variable to anything; it can just stand on its own. That is, we can just write this instead:

If we just use the boolean variable by itself, then
if that variable is true, the conditional test is
true, and the block is executed.

And if inStock is false, then the conditional test fails and the code block is skipped.
Now, while some might claim our original, verbose version was clearer in its intent, it’s more common to
see the more succinct version in practice. And, you’ll find the less verbose version easier to read as well.

onSale inStock buyIt buyIt

true true

true false

false true

false false

We’ve got two statements below that use the onSale and inStock variables in conditionals
to figure out the value of the variable buyIt. Work through each possible value of inStock
and onSale for both statements. Which version is the biggest spender?

var buyIt = (inStock || onSale);

var buyIt = (inStock && onSale);

66 Chapter 2

fixing hardcoded values

It was brutal, I tell ya.
No matter what we did, it
was like, like.... they knew

exactly where our ship was!

Do you think
it had anything to

do with hardcoding
your ship locations?

Yes, we still have one little matter to take care of because right now you’ve hard coded the location
of the ship—no matter how many times you play the game, the ship is always at locations 3, 4 and 5.
That actually works out well for testing, but we really need to randomly place the ship to make it a little
more interesting to the user.

Let’s step back and think about the right way to place a ship on the 1-D grid of seven cells. We need a
starting location that allows us to place three consecutive positions on the grid. That means we need a
starting location from zero to four.

Finishing the Simple Battleship game

0 1 2 3 4 5 6

We can start in locations 0, 1, 2, 3
or 4 and still have room to place the ship in the next three positions.

0 1 2 3 4 5 6

0 1 2 3 4 5 6

But, starting at position 5 or 6 won't work.

WRONG

you are here 4 67

writing real code

var location1 = randomLoc;

var location2 = location1 + 1;

var location3 = location2 + 1;

Take the random
location along
with the next two
consecutive locations.

How to assign random locations

The only problem is it returns numbers like
0.128, 0.830, 0.9, 0.42. These numbers
are between 0 and 1 (not including exactly
1). So we need a way to use this to
generate random numbers 0-4.

var randomLoc = Math.random();

Our variable randomLoc. We want
to assign a number from 0 to 4 to
this variable.

Math.random is part of
standard JavaScript and
returns a random number.

Now, once we have a starting location (between zero and four), we
simply use it and the following two locations to hold the ship.

Okay, but how do we generate a random number? That’s where
we turn to JavaScript and its built-in functions. More specifically,
JavaScript comes with a bunch of built-in math-related functions,
including a couple that can be used to generate random numbers.
Now we’re going to get deeper into built-in functions, and functions in
general a little later in the book. For now, we’re just going to make use
of these functions to get our job done.

The world-famous recipe for generating
a random number
We’re going to start with the Math.random function. By calling this
function we’ll get back a random decimal number:

What we need is an integer between 0 and 4—that is, 0, 1, 2, 3 or 4—not a
decimal number, like 0.34. To start, we could multiply the number returned
by Math.random by 5 to get a little closer; here’s what we mean…

68 Chapter 2

using random numbers
First, if we multiply the random number
by 5, then we get a number between
0 and 5, but not including 5. Like
0.13983, 4.231, 2.3451, or say 4.999.

We can use Math.floor to round down all these
numbers to their nearest integer value.

So, for instance, 0.13983 becomes 0,
2.34 becomes 2 and 4.999 becomes 4.

var randomLoc = Math.random() * 5;

That’s closer! Now all we need to do is clip off the end of the number
to give us an integer number. To do that we can use another built-in
Math function, Math.floor:

var randomLoc = Math.floor(Math.random() * 5);

Q: If we’re trying to generate a number
between 0 and 4, why does the code have
a 5 in it, as in
Math.floor(Math.random() * 5)?

A: Good question. First, Math.random
generates a number between 0 and 1, but
not including 1. The maximum number you
can get from Math.random is 0.999.... When
you multiply that number by 5, the highest
number you’ll get is 4.999…
Math.floor always rounds a number down,
so 1.2 becomes 1, but so does 1.9999. If we
generate a number from 0 to 4.999… then
everything will be rounded down to 0 to 4.
This is not the only way to do it, and in other
languages it’s often done differently, but this
is how you’ll see it done in most JavaScript
code.

Q: So if I wanted a random number
between 0 and 100 (including 100), I’d
write
Math.floor(Math.random() * 101)?

A: That’s right! Multiplying by 101, and
using Math.floor to round down, ensures that
your result will be at most 100.

Q: What are the parentheses for in
Math.random()?

A: We use parentheses whenever
we “call” a function. Sometimes we need
to hand a value to a function, like we do
when we use alert to display a message,
and sometimes we don’t, like when we use
Math.random. But whenever you’re calling
a function (whether it’s built-in or not), you’ll
need to use parentheses. Don’t worry about
this right now; we’ll get into all these details
in the next chapter.

Q: I can’t get my battleship game to
work. I’m not seeing anything in my web
page except the “Play battleship” heading.
How can I figure out what I did wrong?

A: This is where using the console can
come in handy. If you’ve made an error
like forgetting a quote on a string, then
JavaScript will typically complain about
the syntax of your program not being right,
and may even show you the line number
where your error is. Sometimes errors are
more subtle, however. For instance, if you
mistakenly write isSunk = false instead of
isSunk == false, you won’t see a JavaScript
error, but your code won’t behave as you
expect it to. For this kind of error, try using
console.log to display the values of your
variables at various points in your code to
see if you can track down the error.

Remember, * means multiplication.

you are here 4 69

writing real code

Back to do a little more QA
That’s all we need. Let’s put this code together (we’ve already done that below) and
replace your existing location code with it. When you’re finished, give it a few test
runs to see how fast you can sink the enemy.

QA Notes

var randomLoc = Math.floor(Math.random() * 5);
var location1 = randomLoc;

var location2 = location1 + 1;

var location3 = location2 + 1;

var guess;
var hits = 0;
var guesses = 0;
var isSunk = false;

while (isSunk == false) {
 guess = prompt("Ready, aim, fire! (enter a number from 0-6):");
 if (guess < 0 || guess > 6) {
 // the rest of your code goes here....

Here’s one of our test sessions. The game’s a little more
interesting now that we’ve got random locations for the
ship. But we still managed to get a pretty good score…

On our second
guess, we miss.

But then we get
two hits in a row.

On the last hit, we
sink the battleship!

We get a hit on
our first guess.

Go ahead and replace your
location variable declarations
with these new statements.

70 Chapter 2

exercise in finding a bug

It’s a cliff-hanger!
Will we find the bug?

Will we fix the bug?

Stay tuned for a much improved version
of Battleship a little later in the book…

And in the meantime, see if you can
come up with ideas for how you might
fix the bug.

On our second guess
we find a location
of the ship.

And then we keep
entering that same
location, and keep
getting hits!

On the third hit,
we see that we sank
the battleship! But
something’s wrong. We
shouldn’t be able to sink
it by hitting the same
location three times.

Wait a sec, we noticed something that looks wrong. Hint: when we enter 0, 1,
1, 1 things don’t look right! Can you figure out what’s happening?

We miss on our
first guess.

Here are our guesses...

We entered 0, 1, 1, 1, and
the ship is at 1, 2, 3. QA Notes

Found a bug! Entering the same number that is a hit on a ship results in sinking the ship, when it shouldn’t.

you are here 4 71

writing real code

 � You can use a flowchart to outline the logic of a
JavaScript program, showing decision points and
actions.

 � Before you begin writing a program, it’s a good idea
to sketch out what your program needs to do with
pseudocode.

 � Pseudocode is an approximation of what your real code
should do.

 � There are two kinds of boolean operators: comparison
operators and logical operators. When used in an
expression, boolean operators result in a true or false
value.

 � Comparison operators compare two values and result
in true or false. For example, we can use the boolean
comparison operator < (“less than”) like this: 3 < 6. This
expression results in true.

 � Logical operators combine two boolean values. For
example true || false results in true; true && false results
in false.

 � You can generate a random number between 0 and 1
(including 0, but not including 1) using the Math.random
function.

 � The Math.floor function rounds down a decimal number
to the nearest integer.

 � Make sure you use Math with an uppercase M, and not
m, when using Math.random and Math.floor.

 � The JavaScript function prompt shows a dialog with
message and a space for the user to enter a value.

 � In this chapter, we used prompt to get input from the
user, and alert to display the results of the battleship
game in the browser.

You’ve probably noticed that we made use of a few built-in functions like alert, prompt,
console.log and Math.random. With very little effort, these functions have given you
the ability to pop up dialog boxes, log output to the console and generate random numbers,
almost like magic. But, these built-in functions are just packaged up code that’s already been
written for you, and as you can see their power is that you can use and reuse them just by
making a call to them when you need them.

Now there’s a lot to learn about functions, how to call them, what kinds of values
you can pass them, and so on, and we’re going to start getting into all that in the
next chapter where you learn to create your own functions.

But before you get there you’ve got the bullet points to review, a crossword puzzle to
complete… oh, and a good night’s sleep to let everything sink in.

Congrats on your first true JavaScript program,
and a short word about reusing code

72 Chapter 2

javascript crossword

JavaScript cross
How does a crossword puzzle help you learn
JavaScript? The mental twists and turns burn the
JavaScript right into your brain!

1 2 3 4

5 6

7 8

9

10

11

Across
3. To get input from a user, you can use the

_________ function.
5. To randomly choose a position for a ship, use

Math._________.
8. We keep track of whether a ship is sunk or

not with a ________ variable.
9. If you don't initialize a variable, the value is

__________.
10. Boolean operators always result in true or

_________.
11. Both while and if statements use

__________ tests.

Down
1. If you're good at testing programs, you

might want to become a ________
Assurance specialist.

2. == is a _____________ operator you can
use to test to see if two values are the same.

3. This helps you think about how a program is
going to work.

4. To get a true value from an AND operator
(&&), both parts of the conditional must be
___________.

6. OR (||) and AND (&&) are ___________
operators.

7. JavaScript has many built-in __________
like alert and prompt.

10. To get a false value from an OR operator
(||), both parts of the conditional must be
__________.

ACROSS
3. To get input from a user, you can use the _________
function.
5. To randomly choose a position for a ship, use
Math._________.
8. We keep track of whether a ship is sunk or not with a

________ variable.
9. If you don’t initialize a variable, the value is

__________.
10. Boolean operators always result in true or _________.
11. Both while and if statements use __________ tests.

DOWN
1. If you’re good at testing programs, you might want to
become a ________ Assurance specialist.
2. == is a _____________ operator you can use to test to
see if two values are the same.
3. This helps you think about how a program is going to
work.
4. To get a true value from an AND operator (&&), both
parts of the conditional must be ___________.
6. OR (||) and AND (&&) are ___________ operators.
7. JavaScript has many built-in __________ like alert and
prompt.
10. To get a false value from an OR operator (||), both
parts of the conditional must be __________.

you are here 4 73

writing real code

Let’s say our virtual row looks like this:

And we’ve represented that by setting:

location1 = 3;

location2 = 4;

location3 = 5;

Assume the following user input:

1, 4, 2, 3, 5

Now, using the pseudocode on the previous page, trace through each step of code,
and see how this works. Put your notes below. We’ve started the trace for you below.
Here’s our solution.

location1 location2 location 3 guess guesses hits isSunk

3 4 5 0 0 false

3 4 5 1 1 0 false

0 1 2 3 4 5 6

3 4 5 4 2 1 false

3 4 5 2 3 1 false

3 4 5 3 4 2 false

3 4 5 5 5 3 true

74 Chapter 2

exercise solutions

We’ve got a whole bunch of boolean expressions that need evaluating below. Fill in the blanks. Here’s our solution:

var temp = 81;

var willRain = true;

var humid = (temp > 80 && willRain == true);

What’s the value of humid?

var guess = 6;

var isValid = (guess >= 0 && guess <= 6);

What’s the value of isValid?

var kB = 1287;
var tooBig = (kB > 1000);
var urgent = true;
var sendFile =
 (urgent == true || tooBig == false);

What’s the value of sendFile?

var keyPressed = "N";

var points = 142;

var level;

if (keyPressed == "Y" ||
 (points > 100 && points < 200)) {

 level = 2;

} else {

 level = 1;

}

What’s the value of level?

true

true
2

true

onSale inStock buyIt buyIt

true true true true

true false true false

false true true false

false false false false

We’ve got two statements below that use the onSale and inStock variables
in conditionals to figure out the value of the variable buyIt. Work through
each possible value of inStock and onSale for both statements. Which
version is the biggest spender? The OR (||) operator!

var buyIt = (inStock || onSale);

var buyIt = (inStock && onSale);

you are here 4 75

writing real code

if (price < 200 || price > 600) {

 alert("Price is too low or too high! Don't buy the gadget.");

} else {

 alert("Price is right! Buy the gadget.");

}

if (price >= 200 || price <= 600) {

 alert("Price is right! Buy the gadget.");

} else {

 alert("Price is too low or too high! Don't buy the gadget.");

}

Bob

Bill

Bob and Bill, both from accounting, are working on a new price checker application for their
company’s web site. They’ve both written if/else statements using boolean expressions. Both
are sure they’ve written the correct code. Which accountant is right? Should these accountants
even be writing code? Here’s our solution.

price Bob’s Bill’s

100 true

alert: Don’t buy!

true

alert: Buy!

700 true

alert: Don’t buy!

true

alert: Buy!

400 false

alert: Buy!

true

alert: Buy!

Bob’s the better coder (and possibly, a better accountant, too).
Bob’s solution works, but Bill’s doesn’t. To see why, let’s try three
different prices (too low, too high and just right) with Bob’s and
Bill’s conditionals and see what results we get:

If price is 100, then 100 is less than
200, so Bob’s conditional is true
(remember, with OR, you only need one of
the expressions to be true for the whole
thing to be true), and we alert NOT to
buy.
But Bill’s conditional is also true, because
price is <= 600! So the result of the
entire expression is true, and we alert
the user to buy, even though the price is
too low.

Turns out Bill’s conditional is always true, no
matter what the price is, so his code tells us to Buy! every time. Bill should stick with accounting.

76 Chapter 2

exercise solutions

// Variable declarations go here

while (isSunk == false) {

 guess = prompt("Ready, aim, fire! (enter a number from 0-6):");

 if (guess < 0 || guess > 6) {

 alert("Please enter a valid cell number!");

 } else {

 guesses = guesses + 1;

 if (guess == location1 || guess == location2 || guess == location3) {

 hits = hits + 1;

 if (hits == 3) {

 isSunk = true;

 alert("You sank my battleship!");

 }

 }

 }

}

var stats = "You took " + guesses + " guesses to sink the battleship, " +

 "which means your shooting accuracy was " + (3/guesses);

alert(stats);

alert("HIT!");

alert("MISS");

else {

}

Remember we said pseudocode often isn’t perfect? Well we actually left something out of our
original pseudocode: we’re not telling the user if her guess is a HIT or a MISS. Can you insert
these pieces of code in the proper place to correct this? Here’s our solution:

you are here 4 77

writing real code

if (guess == location1) {

 hits = hits + 1;

} else if (guess == location2) {

 hits = hits + 1;

} else if (guess == location3) {

 hits = hits + 1;

}

We're using the same code over
and over here.

What do you think of this first attempt to write the code to detect when a ship
is hit? Does it look more complex than it needs to be, or are we repeating
code in a way that seems a bit, well, redundant? Could we simplify it? Using
what you know of the || operator (that is, the boolean OR operator), can you
simplify this code? Here’s our solution.

If we ever have to change how hits are
updated, we've got three places to change
our code. Changes like this are often a
source of bugs and issues in code.

Not only that, this code is just way more complex than it
needs to be. It's harder to read than it should be, and it
took a lot more thought and typing than needed.

if (guess == location1 || guess == location2 || guess == location3) {

 hits = hits + 1;

}

But, with the boolean OR operator we can combine the
tests so that if guess matches any of location1, location2 or
location3, then the if conditional will be true, and the hits
variable will be updated.

Isn't that much easier on the eye? Not
to mention easier to understand.

And if we ever have to change how hits is updated,
well, then we only have one place to do it, which is
much less error prone.

78 Chapter 2

exercise solutions

JavaScript cross Solution
How does a crossword puzzle help you learn
JavaScript? The mental twists and turns burn the
JavaScript right into your brain! Here’s our solution.

Q
1

C
2

P
3

R O M P T T
4

U O S R
R
5

A N D O M E L
6

U
L P U F

7
B
8

O O L E A N
I A D U G
T R O U

9
N D E F I N E D

Y I C C C
S O T F

10
A L S E

C
11

O N D I T I O N A L
N E O L

N S
S E

Across
3. To get input from a user, you can use the

_________ function. [PROMPT]
5. To randomly choose a position for a ship, use

Math._________. [RANDOM]
8. We keep track of whether a ship is sunk or

not with a ________ variable. [BOOLEAN]
9. If you don't initialize a variable, the value is

__________. [UNDEFINED]
10. Boolean operators always result in true or

_________. [FALSE]
11. Both while and if statements use

__________ tests. [CONDITIONAL]

Down
1. If you're good at testing programs, you

might want to become a ________
Assurance specialist. [QUALITY]

2. == is a _____________ operator you can
use to test to see if two values are the same.
[COMPARISON]

3. This helps you think about how a program is
going to work. [PSEUDOCODE]

4. To get a true value from an AND operator
(&&), both parts of the conditional must be
___________. [TRUE]

6. OR (||) and AND (&&) are ___________
operators. [LOGICAL]

7. JavaScript has many built-in __________
like alert and prompt. [FUNCTIONS]

10. To get a false value from an OR operator
(||), both parts of the conditional must be
__________. [FALSE]

this is a new chapter 79

3 introducing functions

Getting functional

Get ready for your first superpower. You’ve got some

programming under your belt; now it’s time to really move things along with

functions. Functions give you the power to write code that can be applied to

all sorts of different circumstances, code that can be reused over and over,

code that is much more manageable, code that can be abstracted away and

given a simple name so you can forget all the complexity and get on with the

important stuff. You’re going to find not only that functions are your gateway

from scripter to programmer, they’re the key to the JavaScript programming

style. In this chapter we’re going to start with the basics: the mechanics, the

ins and outs of how functions really work, and then you’ll keep honing your

function skills throughout the rest of the book. So, let’s get a good foundation

started, now.

More on this
as we progress
through the book.

80 Chapter 3

code analysis

A. The code seems very
redundant.

B. If we want to change the
display of the output, or add
another weight for dogs, this is
going to require a lot of reworking.

C. Looks tedious to type in!

D. Not the most readable code I’ve
ever seen.

E. ___________________________

var dogName = "rover";
var dogWeight = 23;
if (dogWeight > 20) {
 console.log(dogName + " says WOOF WOOF");
} else {
 console.log(dogName + " says woof woof");
}
dogName = "spot";
dogWeight = 13;
if (dogWeight > 20) {
 console.log(dogName + " says WOOF WOOF");
} else {
 console.log(dogName + " says woof woof");
}
dogName = "spike";
dogWeight = 53;
if (dogWeight > 20) {
 console.log(dogName + " says WOOF WOOF");
} else {
 console.log(dogName + " says woof woof");
}
dogName = "lady";
dogWeight = 17;
if (dogWeight > 20) {
 console.log(dogName + " says WOOF WOOF");
} else {
 console.log(dogName + " says woof woof");
}

Do a little analysis of the code below. How does it look? Choose as many of
the options below as you like, or write in your own analysis:

you are here 4 81

introducing functions

var dogName = "rover";

var dogWeight = 23;

if (dogWeight > 20) {

 console.log(dogName + " says WOOF WOOF");

} else {

 console.log(dogName + " says woof woof");

}

 ...

dogName = "lady";

dogWeight = 17;

if (dogWeight > 20) {

 console.log(dogName + " says WOOF WOOF");

} else {

 console.log(dogName + " says woof woof");

}

What’s wrong with the code anyway?
We just looked at some code that got used over and over. What’s wrong
with that? Well, at face value, nothing. After all, it works, right? Let’s
have a closer look at the code in question:

What we're doing here is comparing
the dog's weight to 20, and if it's
greater than 20, we're outputting a
big WOOF WOOF. If it's less than 20,
we’re outputting a smaller woof woof.

 And this code is... d’oh! It's
doing EXACTLY the same
thing. And so on, many times
over in the rest of the code.

Sure, this code looks innocent enough, but it’s tedious to write, a
pain to read and will be problematic if your code needs to change,
over time. That last point will ring true more and more as you gain
experience in programming—all code changes over time and the
code above is a nightmare waiting to happen because we’ve got the
same logic repeated over and over, and if you need to change that
logic, you’ll have to change it in multiple places. And the bigger the
program gets, the more changes you’ll have to make, leading to more
opportunities for mistakes. What we really want is a way to take
redundant code like this and to put it in one place where it can be
easily re-used whenever we need it.

How can we improve this code? Take a few
minutes to think of a few possibilities. Does
JavaScript have something that could help?

dogName = "spike";
dogWeight = 53;
if (dogWeight > 20) {
 console.log(dogName + " says WOOF WOOF");
} else {
 console.log(dogName + " says woof woof");
}
dogName = "lady";
dogWeight = 17;
if (dogWeight > 20) {
 console.log(dogName + " says WOOF WOOF");
} else {
 console.log(dogName + " says woof woof");
}

82 Chapter 3

If only I could find a way to reuse code
so that anytime I needed it, I could just use it
rather than retyping it. And a way to give it a nice

memorable name so that I could remember it. And
a way to make changes in just one place instead of
many if something changes. That would be dreamy.

But I know it’s just a fantasy...

you are here 4 83

introducing functions

function bark(name, weight) {

}

By the way, did we happen to
mention FUNCTIONS?
Meet functions. JavaScript functions allow you to take a bit of code, give it a
name, and then refer to it over and over whenever we need it. That sounds like
just the medicine we need.

Say you’re writing some code that does a lot of “barking.” If your code is
dealing with a big dog then the bark is a big “WOOF WOOF”. And if it’s
a small dog, the bark is a tiny “woof woof ”. You’re going to need to use this
barking functionality many times in your code. Let’s write a bark function you
can use over and over:

The function
keyword begins a
function definition.

function bark(name, weight) {

 if (weight > 20) {

 console.log(name + " says WOOF WOOF");

 } else {

 console.log(name + " says woof woof");

 }

}

Next we give the
function a name,
like bark.

And we're going to hand it two
things when we get around to using
it: a dog name and a dog weight.

Next we're going to write some code that
gets executed when we use the function.

Now we need to write the code for the function; our code will check the weight and
output the appropriate sized bark.

First we need to check
the weight, and...

...then output the dog's name with
WOOF WOOF or woof woof.

Notice the variable names
used in the code match the
parameters of the function.

We call these the parameters of the
function. We put these in parentheses
after the function name.

We'll call this the body of the
function. It’s everything inside
the { and the }.

Now you have a function you can use in your code.
Let’s see how that works next...

84 Chapter 3

how the function works

function bark(name, weight) {
 if (weight > 20) {
 console.log(name + " says WOOF WOOF");
 } else {
 console.log(name + " says woof woof");
 }
}

bark("rover", 23);
bark("spot", 13);
bark("spike", 53);
bark("lady", 17);

Okay, but how does it actually work?
First, let’s rework our code using the new function bark:

Wow, that’s a lot less code—and it’s so much more readable to your co-worker who
needs to go into your code and make a quick change. We’ve also got all the logic in
one convenient location.

Okay, but how exactly does it all come together and actually work? Let's go through it
step by step.

function bark(name, weight) {

 if (weight > 20) {

 console.log(name + " says WOOF WOOF");

 } else {

 console.log(name + " says woof woof");

 }

}

First we have the function.

So we’ve got the bark function right at the
top of the code. The browser reads this code,
sees it’s a function and then takes a look at the
statements in the body. The browser knows
it isn’t executing the function statements
now; it’ll wait until the function is called from
somewhere else in the code.

Notice too that the function is parameterized,
meaning it takes a dog’s name and weight when
it is called. That allows you to call this function
for as many different dogs as you like. Each
time you do, the logic applies to the name and
weight you pass to the function call.

Again, these are parameters;
they are assigned values when
the function is called.

And everything inside the function
is the body of the function.

Wow, now
that's simple!

Ahh, this is nice,
all the logic of
the code is here in
one place.

Now all that code becomes just a few calls to the
bark function, passing it each dog's name and weight.

you are here 4 85

introducing functions

function bark(name, weight) {

 if (weight > 20) {

 console.log(name + " says WOOF WOOF");

 } else {

 console.log(name + " says woof woof");

 }

}

Now let's call the function.

To call, or invoke, a function, just use its
name, followed by an open parenthesis,
then any values you need to pass it,
separated by commas, and finally a
closing parenthesis. The values in the
parentheses are arguments. For the bark
function we need two arguments: the
dog’s name and the dog’s weight.

Here’s how the call works:

bark("rover", 23);

Here we’re passing
two arguments, the
name and the weight.

When we call the bark function,
the arguments are assigned to the
parameter names.

And any time the parameters
appear in the function, the
values we passed in are used.

Our function name.

"rover" 23

After you call the function, the
body of the function does all
the work.

After we know the value for each parameter—
like name is “rover” and weight is 23—then
we’re ready to execute the function body.

Statements in the function body are executed
from top to bottom, just like all the other code
you’ve been writing. The only difference is that
the parameter names name and weight have
been assigned the values of the arguments you
passed into the function.

After we've assigned the argument values to the parameter names, we then execute the statements in the body.

function bark(name, weight) {

 if (weight > 20) {

 console.log(dogName + " says WOOF WOOF");

 } else {

 console.log(dogName + " says woof woof");

 }

}

"rover"

23

"rover"

The parameters act like variables in the
body, which have been assigned the values
of the arguments you passed in.

“Invoking a function” is just a fancy way of
saying “calling a function.” Feel free to mix and
match, especially when your new boss is around.

86 Chapter 3

function execise

And when it's done... The logic of the body
has been carried out (and, in this example, you’ll see
that Rover, being 23 pounds, sounds like “WOOF
WOOF”), and the function is done. After the function
completes, then control is returned to the statement
following our call to bark.

function bark(name, weight) {

 if (weight > 20) {

 console.log(name + " says WOOF WOOF");

 } else {

 console.log(name + " says woof woof");

 }

}
bark("rover", 23);
bark("spot", 13);
bark("spike", 53);
bark("lady", 17);

"rover says WOOF WOOF"

When the function completes, the browser starts executing
the next line of code after where we called the function.

Here, we're calling the function again, with different
arguments, so the process starts all over again!

We just
did this...
...so do
this next.

bark("juno", 20);

bark("scottie", -1);

bark("dino", 0, 0);

We’ve got some more calls to bark below. Next to each call, write what you think the
output should be, or if you think the code will cause an error. Check your answer at the
end of the chapter before you go on. Write what

you think the
console log will
display here.

Hmm, any ideas
what these do?

bark("fido", "20");

bark("lady", 10);

bark("bruno", 21);

Use your browser’s Developer Tools to access
the console so you can see the output of bark.

you are here 4 87

introducing functions

JavaScript console

Wear a jacket

Wear a t-shirt

Wear a sweater

Code Magnets
This working JavaScript code is all scrambled up on
the fridge. Can you reconstruct the code snippets to
make a working program that produces the output
listed below? Notice, there may be some extra code
on the fridge, so you may not use all the magnets.
Check your answer at the end of the chapter.

function

,

,
,

}
}

}

{

(

)

whatShallIWear

whatShallIWear(50);

whatShallIWear(80);

whatShallIWear(60);

else {

 console.log("We
ar t-shirt");

}

else if (temp < 70) {

 console.log("Wear a sweater");

}

if (temp < 60) {
 console.log("Wear a jacket");
}

temp

temperature

We’re using this to represent
a generic console.

88 Chapter 3

interview with a function

Head First: Welcome Function! We’re looking
forward to digging in and finding out what you’re all
about.

Function: Glad to be here.

Head First: Now we’ve noticed many JavaScript
newbies tend to ignore you. They just get in and write
their code, line by line, top to bottom, no functions at
all. Are you really needed?

Function: Those newbies are missing out. That’s
unfortunate because I’m powerful. Think about me
like this: I give you a way to take code, write it once,
and then reuse it over and over.

Head First: Well, excuse me for saying this, but
if you’re just giving them the ability to do the same
thing, over and over... that’s a little boring isn’t it?

Function: No no, functions are parameterized—in
other words, each time you use the function, you
pass it arguments so it can compute something that’s
relevant to what you need.

Head First: Err, example?

Function: Let’s say you need to show a
user how much the items in his shopping
cart are going to cost, so you write a function
computeShoppingCartTotal. Then you can pass
that function the shopping carts of many users and
each time I compute the amount of each specific
shopping cart.

Head First: If you’re so great, why aren’t more new
coders using you?

Function: That’s not even a true statement; they
use me all the time: alert, prompt, Math.random,
document.write. It’s hard to write anything
meaningful without using functions. It’s not so much
that new users don’t use functions, they just aren’t
defining their own functions.

Head First: Well, right, alert and prompt, those
make sense, but take Math.random—that doesn’t
look quite like a function.

Function: Math.random is a function, but it
happens to be attached to another powerful thing
new coders don’t make a lot of use of: objects.

Head First: Oh yes, objects. I believe our readers
are learning about those in a later chapter.

Function: Fair enough, I’ll save my breath on that
one for later.

Head First: Now this argument/parameter stuff all
seems a little confusing.

Function: Think about it like this: each parameter
acts like a variable throughout the body of the
function. When you call the function, each value you
pass in is assigned to a corresponding parameter.

Head First: And arguments are what?

Function: Oh, that’s just another name for
the values you pass into a function… they’re the
arguments of the function call.

Head First: Well you don’t seem all that great; I
mean, okay you allow me to reuse code, and you have
this way of passing values as parameters. Is that it? I
don’t get the mystery around you.

Function: Oh, that’s just the basics, there’s so much
more: I can return values, I can masquerade around
your code anonymously, I can do a neat trick called
closures, and I have an intimate relationship with
objects.

Head First: Ohhhhh REALLY?! Can we get an
exclusive on that relationship for our next interview?

Function: We’ll talk…

The Function Exposed
This week’s interview: the intimate
side of functions...

you are here 4 89

introducing functions

What can you pass to a function?
When you call a function you pass it arguments and those arguments
then get matched up with the parameters in the function definition.
You can pass pretty much any JavaScript value as an argument, like a
string, a boolean, or a number:

saveMyProfile("krissy", 1991, 3.81, false);

function saveMyProfile(name, birthday, GPA, newuser) {

 if (birthday >= 2004) {

 // code for handling a child

 }

 // rest of code for this function here

}

Pass any JavaScript value as an argument.
Each argument is passed to
its corresponding parameter
in the function.

And each parameter acts as a variable within the function.

You can also pass variables as arguments, and that’s often the
more common case. Here’s the same function call using variables:

var student = "krissy";

var year = 1991;

var GPA = 381/100;

var status = "existinguser";

var isNewUser = (status == "newuser");

saveMyProfile(student, year, GPA, isNewUser);

And, you can even use expressions as arguments:

var student = "krissy";

var status = "existinguser";

var year = 1991;

saveMyProfile(student, year, 381/100, status == "newuser");

Now, each of the values we’re passing
is stored in a variable. When we call
the function, the variable’s values are
passed as the arguments.

So, in this case we’re passing the value
in the variable student, “krissy”, as the
argument to the name parameter.

And we’re also using variables
for these other arguments.

Yes, even these
expressions will work
as arguments!

In each case we first evaluate the
expression to a value, and then that
value is passed to the function.

We can evaluate a
numeric expression...

... or a boolean expression, like this one that
results in passing false to the function.

90 Chapter 3

parameters vs. arguments

I’m still not sure I get the
difference between a parameter
and an argument—are they just two

names for the same thing?

No, they’re different.
When you define a function you can define it with one or
more parameters.

function cook(degrees, mode, duration) {

 // your code here

}

Here we’re defining three parameters:
degrees, mode and duration.

When you call a function, you call it with arguments:

cook(425.0, "bake", 45);

These are arguments. There are three arguments: a floating
point number, a string and an integer.

cook(350.0, "broil", 10);

So you’ll only define your parameters once, but you’ll probably call
your function with many different arguments.

What does this code output? Are you sure?

function doIt(param) {

 param = 2;

}

var test = 1;

doIt(test);

console.log(test);

you are here 4 91

introducing functions

Below you’ll find some JavaScript code, including variables, function definitions
and function calls. Your job is to identify all the variables, functions, arguments and
parameters. Write the names of each in the appropriate boxes on the right. Check
your answer at the end of the chapter before you go on.

Variables

Functions

Parameters

Arguments

function dogYears(dogName, age) {

 var years = age * 7;

 console.log(dogName + " is " + years + " years old");

}

var myDog = "Fido";

dogYears(myDog, 4);

function makeTea(cups, tea) {

 console.log("Brewing " + cups + " cups of " + tea);

}

var guests = 3;

makeTea(guests, "Earl Grey");

function secret() {

 console.log("The secret of life is 42");

}

secret();

function speak(kind) {

 var defaultSound = "";

 if (kind == "dog") {

 alert("Woof");

 } else if (kind == "cat") {

 alert("Meow");

 } else {

 alert(defaultSound);

 }

}

var pet = prompt("Enter a type of pet: ");

speak(pet);

Built-in functions

92 Chapter 3

pass by value

JavaScript is pass-by-value.

It’s important to understand how JavaScript passes arguments. JavaScript passes arguments to a
function using pass-by-value. What that means is that each argument is copied into the parameter
variable. Let’s look at a simple example to see how this works.

That means pass-by-copy.

function addOne(x) {

 x = x + 1;

}

var age = 7;

addOne(age);

function addOne(x) {

 x = x + 1;

}

age

7

x

age

7
x

8

age

7
Let’s declare a variable age, and initialize it to the value 7.

2

1

Now let’s declare a function addOne, with a parameter named x, that
adds 1 to the value of x.

x

3 Now let’s call the function addOne, pass it the variable age as the
argument. The value in age is copied into the parameter x.

4 Now the value of x is incremented by one. But remember x is a copy,
so only x is incremented, not age.

7
This is a
COPY of age.

age doesn’t change
even if x does.

x has been
incremented
within addOne.

We’re
incrementing
x.

you are here 4 93

introducing functions

So how do I think about this
pass-by-value stuff? On the one hand
it feels pretty straightforward, and on
the other hand I feel like I might be

missing something.

We’re glad you’re thinking about it. Understanding
how JavaScript passes values to functions is important. On the
one hand it is pretty straightforward: when an argument is
passed to a function its value is first copied and then assigned to
the corresponding parameter. But, if you don’t understand this,
you can make some wrong assumptions about how functions,
arguments and parameters all work together.

The real impact of pass-by-value is that any changes to a
parameter’s value within the function will affect only the parameter,
not the original variable passed to the function. That’s pretty
much it.

But of course, there’s an exception to every rule, and we’re going
to have to talk about this topic again when we learn objects,
which we’ll talk about in a couple of chapters. But no worries,
with a solid understanding of pass-by-value, you’re in good shape
to have that discussion.

And, for now, just remember that because of pass-by-value,
whatever happens to a parameter in the function, stays in the function. Kinda
like Vegas.

Remember this Brain Power? Do you think
about it differently now, knowing about pass by
value? Or did you guess correctly the first time?

function doIt(param) {

 param = 2;

}

var test = 1;

doIt(test);

console.log(test);

Revisited

94 Chapter 3

more about function arguments

JavaScript console
Brewing 3 cups of undefinedNotice that the value of the

parameter tea is undefined
because we didn’t pass in a value.

Weird Functions
So far you’ve seen the normal way to use functions, but what happens
when you experiment a little by, say, passing too many arguments to a
function? Or not enough? Sounds dangerous. Let’s see what happens:

 function makeTea(cups, tea) {
 console.log("Brewing " + cups + " cups of " + tea);
 }
 makeTea(3);

EXPERIMENT #1: what happens when we
don’t pass enough arguments?

Sounds dicey, but all that really happens is each parameter that doesn’t
have a matching argument is set to undefined. Here’s an example:

JavaScript console
Brewing 3 cups of Earl GreyWorks fine, the function

ignores the extras.

 function makeTea(cups, tea) {
 console.log("Brewing " + cups + " cups of " + tea);
 }
 makeTea(3, "Earl Grey", "hey ma!", 42);

EXPERIMENT #2: what happens when we
pass too many argments?

Ah, in this case JavaScript just ignores the extra. Here’s an example:

There's actually a way to get at the extra arguments, but we won't worry about that just now...
EXPERIMENT #3: what happens when we have NO parameters?

No worries, many functions have no parameters!

 function barkAtTheMoon() {
 console.log("Woooooooooooooo!");
 }
 barkAtTheMoon();

JavaScript console

Woooooooooooooo!

you are here 4 95

introducing functions

Functions can return things too
You know how to communicate with your functions in one direction;
that is, you know how to pass arguments to functions. But what about
the other way? Can a function communicate back? Let’s check out
the return statement:

function bake(degrees) {

 var message;

 if (degrees > 500) {

 message = "I'm not a nuclear reactor!";

 } else if (degrees < 100) {

 message = "I'm not a refrigerator!";

 } else {

 message = "That's a very comfortable temperature for me.";

 setMode("bake");

 setTemp(degrees);

 }

 return message;
}

var status = bake(350);

Here we've got a new bake function
that takes the temperature in
degrees for the oven.

It then sets a variable to a string
that depends on the temperature
requested in the degrees parameter.

And presumably some real work is
getting done here, but we won't
worry about those details for now...

What we care about is that a
return statement is returning
the message as the result of
this function.

Now, when the function is called and returns,
the string that is returned as a result will be
assigned to the status variable.

And in this case, if the status variable was
printed, it would hold the string “That's a
very comfortable temperature for me." Work
through the code and make sure you see why!

350 degrees is the perfect temperature
for good cookies. Feel free to make
some and return to the next page.

96 Chapter 3

the return statement

Tracing through a function with a return statement

function calculateArea(r) {

 var area;

 if (r <= 0) {

 return 0;

 } else {

 area = Math.PI * r * r;

 return area;

 }

}

3

4

5

6

7

Now that you know how arguments and parameters work, and how you can return a value
from a function, let’s trace through a function call from start to finish to see what happens at
every step along the way. Be sure to follow the steps in order.

Developers often call this “tracing the
flow of execution” or just “tracing.” As
you can see the flow can jump around when
you’re calling functions and returning values.
Just take it slow, one step at a time.

var radius = 5.2;1

2

8

9

First, we declare a variable radius
and initialize it to 5.2.

Next, we call the calculateArea
function, and pass the radius
variable as the argument.

The argument is sent to the
parameter r, and the calculateArea
function begins executing with r
containing the value 5.2.

The body of the function executes
starting with declaring a variable,
area. We then test to see if the
parameter r has a value <= 0.

We execute the else clause instead.

We compute the area of the circle
using the value 5.2 in the parameter r.

We return the value of area from the
function. This stops the execution of
the function and returns the value.

The value returned from the
function is stored in the variable
theArea.

Execution continues on the next
line.

3

4

5

6

7

1

2

8

9

10

If r <= 0, then we return 0 from
the function and the function
stops executing. But we passed in
5.2 so this line does NOT execute.

10

JavaScript console

The area is: 84.94866535306801

Output here!

var theArea = calculateArea(radius);

console.log("The area is: " + theArea);

you are here 4 97

introducing functions

Now that you know how to define and call a function, let’s make sure we’ve got
the syntax down cold. Here are all the parts of a function’s anatomy:

Anatomy of a Function

function addScore (level , score) {

 var bonus = level * score * .1;

 return score + bonus;

}

Always start with the
keyword “function”.

Follow the function keyword with
the name of your function.

Even if your function has
no parameters, you still
need an opening and closing
set of parentheses, like ().And then zero or more

comma-separated parameters
between parentheses.

The body sits between
two curly braces and
contains a set of
statements (just like
the statements you’re
used to).

A function can include a
return statement, but it
doesn’t have to.

The return statement includes a
value or an expression, which is
returned as a result of calling
the function.

Here’s the closing
brace of the body.

Variables you need
inside the function
are declared within
the function body.

Q: What happens if I mix up the order
of my arguments, so that I’m passing the
wrong arguments into the parameters?

A: All bets are off; in fact, we’d guess
you’re pretty much guaranteed either an
error at run time or incorrect code. Always
take a careful look at a function’s parameters,
so you know what arguments the function
expects to be passed in.

Q: Why don’t the parameter names
have var in front of them? A parameter is
a new variable right?

A: Effectively yes. The function does all
the work of instantiating the variable for you,
so you don’t need to supply the var keyword
in front of your parameter names.

Q: What are the rules for function
names?

A: The rules for naming a function are the
same as the rules for naming a variable. Just
like with variables, you’ll want to use names
that make sense to you when you read
them, and provide some indication of what
the function does, and you can use camel
case (e.g. camelCase) to combine words in
function names, just like with variables.

Q: What happens if I use the same
name for an argument variable as the
parameter? Like if I use the name x for
both?

A: Even if your argument and parameter
have the same name, like x, the parameter
x gets a copy of the argument x, so they are
two different variables. Changing the value
of the parameter x does not change the
value of the argument x.

Q: What does a function return if it
doesn’t have a return statement?

A: A function without a return statement
returns undefined.

98 Chapter 3

local variable declarations

Good catch. Yes and no.

These declarations work exactly the same within a
function as they do outside a function, in the sense
that you are initializing a new variable to a value.
However, the difference between a variable declared
outside a function and a variable declared inside a function
is where that variable can be used—in other words,
where in your JavaScript code you can reference the
variable. If the variable is declared outside a function,
then you can use it anywhere in your code. If a variable
is declared inside a function, then you can use it only
within that function. This is known as a variable’s scope.
There are two kinds of scope: global and local.

I noticed you started putting
variable declarations right inside
of your functions. Do these
declarations work just the same?

you are here 4 99

introducing functions

Global and local variables

You already know that you can declare a variable by using
the var keyword and a name anywhere in your script:

function getScore(points) {

 var score;

 var i = 0;

 while (i < levelThreshold) {

 //code here

 i = i + 1;

 }

 return score;

}

The points, score and i
variables are all declared
within a function.

var avatar;

var levelThreshold = 1000;

And you’ve seen that you can also declare
variables inside a function:

But what does it matter? Variables are variables, right?
Well, where you declare your variables determines how
visible they are to other parts of your code, and, later,
understanding how these two kinds of variables operate
will help you write more maintainable code (not to
mention, help you understand the code of others).

These are global variables;
they’re accessible everywhere
in your JavaScript code.

Know the difference or risk humiliation

If a variable is
declared outside
a function, it’s
GLOBAL. If it’s
declared inside a
function, it’s LOCAL.We call them local variables

because they are known
locally only within the
function itself.

We need to talk about
your variable usage...

Even if we use levelThreshold inside
the function, it’s global because it’s
declared outside the function.

100 Chapter 3

variable name conventions

Another good catch.

There’s a long history of using the letter i as the
variable you iterate with. This convention developed
back in the days when space was limited (like when
we used punched cards to write code), and there
was an advantage to short variable names. Now it’s
a convention all programmers understand. You’ll
also commonly see j, k, and sometimes even x and y
used in this manner. However, this is one of the only
exceptions to the best practice of choosing meaningful
variable names.

Hey, just a quick question...
We talked about choosing
meaningful variable names, but you
just used the variable name i. That
doesn’t seem very meaningful.

you are here 4 101

introducing functions

var avatar = "generic";

var skill = 1.0;

var pointsPerLevel = 1000;

var userPoints = 2008;

function getAvatar(points) {

 var level = points / pointsPerLevel;

 if (level == 0) {

 return "Teddy bear";

 } else if (level == 1) {

 return "Cat";

 } else if (level >= 2) {

 return "Gorilla";

 }

}

function updatePoints(bonus, newPoints) {

 var i = 0;

 while (i < bonus) {

 newPoints = newPoints + skill * bonus;

 i = i + 1;

 }

 return newPoints + userPoints;

}

userPoints = updatePoints(2, 100);

avatar = getAvatar(2112);

Knowing the scope of your local and global variables
Where you define your variables determines their scope; that is, where they’re visible to
your code and where they aren’t. Let’s look at an example of both locally and globally
scoped variables—remember, the variables you define outside a function are globally
scoped, and the function variables are locally scoped: These four variables are

globally scoped. That means
they are defined and visible
in all the code below.

Note that if you link to
additional scripts in your
page, they will see these global
variables, and you will see their
global variables too!

The level variable here is
local and is visible only
to the code within the
getAvatar function. That
means only this function can
access the level variable.

Note that getAvatar makes
use of the pointsPerLevel
global variable too.

And let’s not forget the
points parameter, which
also has local scope in the
getAvatar function.

In updatePoints we have a local
variable i. i is visible to all of
the code in updatePoints.

And here in our code we can use only the global variables, we have no access to any variables inside the functions because they’re not visible in the global scope.

bonus and newPoints are also
local to updatePoints, while
userPoints is global.

102 Chapter 3

variable scope

The short lives of variables

I could have sworn
the variable was right behind

me, but when I turned around
he was just...gone...

When you’re a variable, you work hard and
life can be short. That is, unless you’re a global
variable, but even with globals, life has its limits.
But what determines the life of a variable? Think
about it like this:

Globals live as long as the page. A global
variable begins life when its JavaScript is loaded
into the page. But, your global variable’s life ends
when the page goes away. Even if you reload the
same page, all your global variables are destroyed
and then recreated in the newly loaded page.

Local variables typically disappear
when your function ends. Local variables
are created when your function is first called and
live until the function returns (with a value or
not). That said, you can take the values of your
local variables and return them from the function
before the variables meet their digital maker.

So, there really is NO escape from the page is
there? If you’re a local variable, your life comes
and goes quickly, and if you’re lucky enough to
be a global, you’re good as long as that browser
doesn’t reload the page.

We say “typically” because there are some
advanced ways to retain locals a little longer,
but we’re not going to worry about them now.

you are here 4 103

introducing functions

Don’t forget to declare your locals!
If you use a variable without declaring it first, that variable
will be global. That means that even if you use a variable
for the first time inside a function (because you meant
for it to be local), the variable will actually be global, and
be available outside the function too (which might cause
confusion later). So, don’t forget to declare your locals!

If you forget to
declare a variable
before using it, the
variable will always
be global (even if the
first time you use it is
in a function).

function playTurn(player, location) {

 points = 0;

 if (location == 1) {

 points = points + 100;

 }

 return points;

}

var total = playTurn("Jai", 1);

alert(points);

var points = 0;

function playTurn(player, location) {

 points = 0;

 if (location == 1) {

 points = points + 100;

 }

 return points;

}

var total = playTurn("Jai", 1);

alert(points);

We forgot to declare
points with “var” before
we used it. So points is
automatically global.

That means we can use points outside the
function! The value doesn’t go away (like it
should) when the function is done executing.

This program behaves as if you’d written this instead:

JavaScript assumes that we meant for points to be

global because we forgot to use “var”, and behaves

as if points were declared at the global level.

Forgetting to declare
your local variables can
cause problems if you use
the same name as another
global variable. You might
overwrite a value you
didn’t mean to.

104 Chapter 3

shadowing variables

You “shadow” your global.
Here’s what that means: say you have a global variable
beanCounter and you then declare a function, like this:

When you do this, any references to beanCounter within
the function refer to the local variable and not the global.
So we say the global variable is in the shadow of the local
variable (in other words we can’t see the global variable
because the local version is in our way).

What happens when I
name a local variable the
same thing as an existing
global variable?

var beanCounter = 10;

function getNumberOfItems(ordertype) {

 var beanCounter = 0;

 if (ordertype == "order") {

 // do some stuff with beanCounter...

 }

 return beanCounter;

}

Note that the local and global variables have no effect on each other: if you change one, it has no effect on the other. They are independent variables.

We’ve got a global
and a local!

you are here 4 105

introducing functions

var x = 32;

var y = 44;

var radius = 5;

var centerX = 0;

var centerY = 0;

var width = 600;

var height = 400;

function setup(width, height) {

 centerX = width/2;

 centerY = height/2;

}

function computeDistance(x1, y1, x2, y2) {

 var dx = x1 - x2;

 var dy = y1 - y2;

 var d2 = (dx * dx) + (dy * dy);

 var d = Math.sqrt(d2);

 return d;

}

function circleArea(r) {

 var area = Math.PI * r * r;

 return area;

}

setup(width, height);

var area = circleArea(radius);

var distance = computeDistance(x, y, centerX, centerY);

alert("Area: " + area);

alert("Distance: " + distance);

Arguments

Parameters

Globals

Locals

Below you’ll find some JavaScript code, including variables, function definitions and function
calls. Your job is to identify the variables used in all the arguments, parameters, local
variables and global variables. Write the variable names in the appropriate boxes on the right.
Then circle any variables that are shadowed. Check your answer at the end of the chapter.

106 Chapter 3

fireside chat

Tonight’s talk: Global and Local variables argue over who is
most important in a program.

Global variable:

Hey Local, I’m really not sure why you’re here
because I can handle any need for a variable a
coder might have. After all, I’m visible everywhere!

You have to admit that I could replace all your
previous local variables with global ones and your
functions would work just the same.

It wouldn’t have to be a mess. Programmers could
just create all the variables they need up at the top
of a program, so they’d all be in one place…

Well, if you’d use better names, then you might be
able to keep track of your variables more easily.

True. But why bother with arguments and
parameters if you’ve got all the values you need in
globals?

Local variable:

Yes but using globals everywhere is just bad style.
Lots of functions need variables that are local. You
know, their own private variables for their own use.
Globals can be seen everywhere.

Well, yes and no. If you’re extremely careful, sure.
But being that careful is difficult, and if you make
a mistake, then we’ve got functions using variables
that other functions are using for different purposes.
You’d also be littering the program with global
variables that you only need inside one function
call… that would just make a huge mess.

Yeah, and so what happens if you need to call a
function that needs a variable, like, oh I dunno,
x, and you can’t remember what you’ve used x
for before. You have to go searching all over your
code to see if you’ve used x anywhere else! What a
nightmare.

And what about parameters? Function parameters
are always local. So you can’t get around that.

Excuse me, do you hear what you’re saying? The
whole point of functions is so we can reuse code to
compute different things based on different inputs.

you are here 4 107

introducing functions

Face it. It’s just good programming practice to use
local variables unless you absolutely need globals.
And globals can get you into real trouble. I’ve seen
JavaScript programs that barely use globals at all!

Of inexperienced programmers, sure. But as
programmers learn to correctly structure their
code for correctness, maintainability, and just good
coding style, they learn how to stop using globals
except when necessary.

They let globals drink? Now, we’re really in
dangerous territory.

Local variable:Global variable:

But your variables are just so... temporary. Locals
come and go at a moment’s notice.

Not at all? Globals are the mainstay of JavaScript
programmers!

I think I need a drink.

Lucky for me you can't
read my local variables.

Who needs to. Your cards are
written all over your face.

A Function

Another Function

108 Chapter 3

questions about variables

Q: Keeping track of the scope of all these locals and
globals is confusing, so why not just stick to globals? That’s
what I’ve always done.

A: If you’re writing code that is complex or that needs to be
maintained over a long period of time, then you really have to
watch how you manage your variables. When you’re overzealous
in creating global variables, it becomes difficult to track where
your variables are being used (and where you’re making changes
to your variables’ values), and that can lead to buggy code. All
this becomes even more important when you’re writing code with
co-workers or you’re using third-party libraries (although if those
libraries are written well, they should be structured to avoid these
issues).

So, use globals where it makes sense, but use them in
moderation, and whenever possible, make your variables local.
As you get more experience with JavaScript, you can investigate
additional techniques to structure code so that it’s more
maintainable.

Q: I have global variables in my page, but I’m loading in
other JavaScript files as well. Do those files have separate
sets of global variables?

A: There is only one global scope so every file you load sees
the same set of variables (and creates globals in the same
space). That’s why it is so important you be careful with your
use of variables to avoid clashes (and reduce or eliminate global
variables when you can).

Q: If I use the same name for a parameter as I do for a
global variable, does the parameter shadow the global?

A: Yes. Just like if you declare a new, local variable in a
function with the same name as a global, if you use the same
name for a parameter as a global, you’re also going to shadow
the global with that name. It’s perfectly fine to shadow a global
name as long as you don’t want to use the global variable inside
your function. But it’s a good idea to document what you’re doing
with comments so you don’t get confused later when you’re
reading your code.

Q: If I reload a page in the browser, do the global
variables all get re-initialized?

A: Yes. Reloading a page is like starting over from scratch
as far as the variables are concerned. And if any code was in
the middle of executing when you reload the page, any local
variables will disappear, too.

Q: Should we always declare our local variables at the
top of a function?

A: Just like with global variables, you can declare local
variables when you first need to use them in a function. However,
it’s a good programming practice to go ahead and declare them
at the top of your function so someone reading your code can
easily find those declarations and get a sense at a glance of all
the local variables used within the function. In addition, if you
delay declaring a variable and then decide to use that variable
earlier in the body of the function than you originally anticipated,
you might get behavior that you don’t expect. JavaScript creates
all local variables at the beginning of a function whether you
declare them or not (this is called “hoisting” and we’ll come
back to it later), but the variables are all undefined until they are
assigned a value, which might not be what you want.

Q: Everyone seems to complain about the overuse
of global variables in JavaScript. Why is this? Was the
language badly designed or do people not know what they’re
doing, or what? And what do we do about it?

A: Globals are often overused in JavaScript. Some of this is
because the language makes it easy to just jump in and start
coding—and that’s a good thing—because JavaScript doesn’t
enforce a lot of structure or overhead on you. The downside
is when people write serious code this way and it has to be
changed and maintained over the long term (and that pretty much
describes all web pages). All that said, JavaScript is a powerful
language that includes features like objects you can use to
organize your code in a modular way. Many books have been
written on that topic alone, and we’re going to give you a taste of
objects in Chapter 5 (which is only a couple of chapters away).

you are here 4 109

introducing functions

We’ve talked a
lot about local and global

variables and where they should be
declared, but we haven’t talked about
where to declare our functions. Should
we just put them all at the top of our

JavaScript files?

Actually, you can put your functions
anywhere in your JavaScript file.

JavaScript doesn’t care if your functions are declared before or
after you use them. For instance, check out this code:

var radius = 5;

var area = circleArea(radius);

alert(area);

function circleArea(r) {

 var a = Math.PI * r * r;

 return a;

}

Notice that
we’re using
the circleArea
function before
we’re defining it!

The circleArea function isn’t actually defined until after we’ve called it, in the code above. How on earth does this work?
This might seem really odd, especially if you remember
when the browser loads your page, it starts executing the
JavaScript from the top to the bottom of your file. But, the
truth is JavaScript actually makes two passes over your
page: in the first pass it reads all the function definitions,
and in the second it begins executing your code. So, that
allows you to place functions anywhere in your file.

110 Chapter 3

function exercise

function clunk(times) {
 var num = times;
 while (num > 0) {
 display("clunk");
 num = num - 1;
 }
}

function thingamajig(size) {
 var facky = 1;
 clunkCounter = 0;
 if (size == 0) {
 display("clank");
 } else if (size == 1) {
 display("thunk");
 } else {
 while (size > 1) {
 facky = facky * size;
 size = size - 1;
 }
 clunk(facky);
 }
}

function display(output) {
 console.log(output);
 clunkCounter = clunkCounter + 1;
}
var clunkCounter = 0;
thingamajig(5);
console.log(clunkCounter);

The Thing-A-Ma-Jig

Your output
here!

The Thing-A-Ma-Jig is quite a contraption—it clanks and clunks and even thunks,
but what it really does, well, you’ve got us stumped. Coders claim they know how it

works. Can you uncrack the code and find its quirks?

The Thing-A-Ma-Jig

We recommend passing the Thing-A-Ma-Jig the numbers 0, 1, 2, 3, 4, 5, etc. See if you know what it's doing.

JavaScript console

you are here 4 111

introducing functions

Webville Guide to Code Hygiene

In Webville we like to keep things clean, organized and ready for expansion.
There’s no place that needs to be better maintained than your code, and
JavaScript can seem pretty loosey-goosey when it comes to organizing your
variables and functions. So we’ve put together a neat little guide for you that makes
a few recommendations for those new to Webville. Take one, they’re FREE.

Global variables, right at the TOP!

It’s a good idea to keep your globals grouped together as much as possible, and if
they’re all up at the top, it’s easy to find them. Now you don’t have to do this, but
isn’t it easier for you and others to locate the variables used in your code if they’re
all at the top?

Functions like to sit together.

Well, not really; they actually don’t care, they’re just functions. But, if you keep
your functions together, it’s a lot easier to locate them. As you know, the browser
actually scans your JavaScript for the functions before it does anything else. So you
can place them at the top or bottom of the file, but if you keep them in one place
your life will be easier. Here in Webville, we often start with our global variables
and then put our functions next.

Let your local variables be declared at the TOP of the function they’re
in.

Put all your local variable declarations at the beginning of the function body. This
makes them easy to find and ensures they are all declared properly before use.

That’s it, just be safe and we hope you enjoy your time coding in Webville!

112 Chapter 3

who am i exercise

Who am I?

I get passed into a function.

I send values back to the calling code.

I’m the all important keyword.

I’m what receives arguments.

It really means ‘make a copy’.

I’m everywhere.

Another phrase for invoking a function.

Example of a function attached to an object.

alert and prompt are examples.

What functions are great for.

Where I can be seen.

I’m around when my function is.

A bunch of JavaScript attendees, in full costume, are playing a
party game, “Who am I?” They give you a clue, and you try to
guess who they are, based on what they say. Assume they always
tell the truth about themselves. Fill in the blank next to each
sentence with the name of one attendee.

Tonight’s attendees:

function, argument, return, scope, local variable, global
variable, pass-by-value, parameter, function call,
Math.random, built-in functions, code reuse.

you are here 4 113

introducing functions

The case of the attempted robbery not worth investigating
Sherlock finished his phone call with the bumbling chief of police, Lestrade, and sat
down in front of the fireplace to resume reading the newspaper. Watson looked at him
expectantly.

“What?” said Sherlock, not looking up from the paper.

“Well? What did Lestrade have to say?” Watson asked.

“Oh, he said they found a bit of rogue code in the bank account where the
suspicious activity was taking place.”

“And?” Watson said, trying to hide his frustration.

“Lestrade emailed me the code, and I told him it wasn’t worth pursuing. The
criminal made a fatal flaw and will never be able to actually steal the money,”

Sherlock said.

“How do you know?” Watson asked.

“It’s obvious if you know where to look,” Sherlock exclaimed. “Now stop bothering me
with questions and let me finish this paper.”

With Sherlock absorbed in the latest news, Watson snuck a peek at Sherlock’s phone and
pulled up Lestrade’s email to look at the code.

Five Minute
Mystery

var balance = 10500;

var cameraOn = true;

function steal(balance, amount) {

 cameraOn = false;

 if (amount < balance) {

 balance = balance - amount;

 }

 return amount;

 cameraOn = true;

}

var amount = steal(balance, 1250);

alert("Criminal: you stole " + amount + "!");

Why did Sherlock decide not to investigate the case? How could he
know that the criminal would never be able to steal the money just by
looking at the code? Is there one problem with the code? Or more?

This is the real, actual bank
balance in the account.

114 Chapter 3

chapter summary

 � Declare a function using the function
keyword, followed by the name of the
function.

 � Use parentheses to enclose any parameters
a function has. Use empty parentheses if
there are no parameters.

 � Enclose the body of the function in curly
braces.

 � The statements in the body of a function are
executed when you call a function.

 � Calling a function and invoking a function
are the same thing.

 � You call a function by using its name
and passing arguments to the function’s
parameters (if any).

 � A function can optionally return a value using
the return statement.

 � A function creates a local scope for
parameters and any local variables the
function uses.

 � Variables are either in the global scope
(visible everywhere in your program) or in
the local scope (visible only in the function
where they are declared).

 � Declare local variables at the top of the body
of your function.

 � If you forget to declare a local variable using
var, that variable will be global, which could
have unintended consequences in your
program.

 � Functions are a good way to organize your
code and create reusable chunks of code.

 � You can customize the code in a function by
passing in arguments to parameters (and
using different arguments to get different
results).

 � Functions are also a good way to reduce or
eliminate duplicate code.

 � You can use JavaScript’s many built-in
functions, like alert, prompt, and
Math.random, to do work in your programs.

 � Using built-in functions means using existing
code you don’t have to write yourself.

 � It’s a good idea to organize your code so
your functions are together, and your global
variables are together, at the top of your
JavaScript file.

you are here 4 115

introducing functions

JavaScript cross
In this chapter you got functional. Now use some
brain functions to do this crossword.

1 2

3

4 5

6 7 8

9 10

11 12

13

14 15

16

17

Across
4. A parameter acts like a _________ in the

body of a function.
6. JavaScript uses __________ when passing

arguments to functions.
10. You can declare your functions __________

in your JavaScript file.
11. What gets returned from a function without

a return statement.
13. Local variables disappear when the

_________ returns.
16. If you forget to declare your locals, they'll

be treated like ________.
17. A local variable can __________ a global

variable.

Down
1. A variable with global ________ is visible

everywhere.
2. Use functions so you can _______ code

over and over again.
3. The variables that arguments land in when

they get passed to functions.
5. To get a value back from a function, use the

________ statement.
7. What gets passed to functions.
8. When you reload your page, all your

__________ get re-initialized.
9. ________ through your code means

following the execution line by line.
12. Watson looked at the bank heist code in

Sherlock's ______ on his phone.
14. It's better to use ________ variables

whenever you can.

ACROSS
4. A parameter acts like a _________ in the body of a
function.
6. JavaScript uses __________ when passing arguments
to functions.
10. You can declare your functions __________
in your JavaScript file.
11. What gets returned from a function without
a return statement.
13. Local variables disappear when the
_________ returns.
16. If you forget to declare your locals, they’ll
be treated like ________.
17. A local variable can __________ a global
variable.

DOWN
1. A variable with global ________ is visible everywhere.
2. Use functions so you can _______ code over and over
again.
3. The variables that arguments land in when they get
passed to functions.
5. To get a value back from a function, use the ________
statement.
7. What gets passed to functions.
8. When you reload your page, all your __________ get
re-initialized.
9. ________ through your code means following the
execution line by line.
12. Watson looked at the bank heist code in Sherlock’s
______ on his phone.
14. It’s better to use ________ variables whenever you
can.
15. Extra arguments to a function are __________.

116 Chapter 3

exercise solutions

var dogName = "rover";
var dogWeight = 23;
if (dogWeight > 20) {
 console.log(dogName + " says WOOF WOOF");
} else {
 console.log(dogName + " says woof woof");
}
dogName = "spot";
dogWeight = 13;
if (dogWeight > 20) {
 console.log(dogName + " says WOOF WOOF");
} else {
 console.log(dogName + " says woof woof");
}
dogName = "spike";
dogWeight = 53;
if (dogWeight > 20) {
 console.log(dogName + " says WOOF WOOF");
} else {
 console.log(dogName + " says woof woof");
}
dogName = "lady";
dogWeight = 17;
if (dogWeight > 20) {
 console.log(dogName + " says WOOF WOOF");
} else {
 console.log(dogName + " says woof woof");
} We chose all of them!

Do a little analysis of the code below. How does it look?
Choose as many of the options below as you like, or

write in your own analysis. Here’s our solution.

A. The code seems very
redundant.

B. If we wanted to change how
this outputs, or if we wanted to
add another weight for dogs,
this is going to require a lot of
reworking.

C. Looks tedious to type in!

D. Not the most readable code I've
ever seen.

E. ___________________________

Looks like the developer thought
the weights might change over time.

you are here 4 117

introducing functions

bark("juno", 20);

bark("scottie", -1);

bark("dino", 0, 0);

We’ve got some more calls to bark below. Next to each call, write what you think the
output should be, or if you think the code will cause an error. Here’s our solution.

Our bark function doesn’t check to make
sure dog weights are greater than 0. So
this works because -1 is less than 20.

bark("fido", "20");

bark("lady", 10);

bark("bruno", 21);

juno says woof woof

scottie says woof woof

dino says woof woof

fido says woof woof

lady says woof woof

bruno says WOOF WOOF

The bark function just ignores the extra
argument, 0. And using 0 as the weight
doesn’t make sense, but it still works.

We compare the string “20” to the number 20. “20” isn’t
greater than 20, so fido says “woof woof”. (You’ll find
out later how JavaScript compares “20” and 20.)

118 Chapter 3

exercise solutions

JavaScript console

Wear a jacket

Wear a t-shirt

Wear a sweater

Code Magnets Solution
This working JavaScript code is all scrambled up on
the fridge. Can you reconstruct the code snippets to
make a working program that produces the output
listed below? Notice, there may be some extra code
on the fridge, so you may not use all the magnets.
Here’s our solution.

function

,

,
,

}
}

}

whatShallIWear

whatShallIWear(50);

whatShallIWear(80);

whatShallIWear(60);

if (temp < 60) {
 console.log("Wear a jacket");
}

temp

temperature

() {

else if (temp < 70) {

 console.log("Wear a sweater");

}

else {

 console.log("We
ar t-shirt");

}

Leftover magnets.

you are here 4 119

introducing functions

Below you’ll find some JavaScript code, including variables, function definitions and
function calls. Your job is to identify all the variables, functions, arguments and parameters.
Write the names of each in the appropriate boxes on the right. Here’s our solution.

Variables

Functions

Parameters

Arguments

myDog, guests, pet,
years, defaultSound

dogYears, makeTea,
secret, speak,

dogName, age,
cups, tea, kind

myDog, 4, guests,
“Earl Grey”, pet,
plus all the string
arguments to alert
and console.log

Built-in functions

alert, console.log,
prompt

function dogYears(dogName, age) {

 var years = age * 7;

 console.log(dogName + " is " + years + " years old");

}

var myDog = "Fido";

dogYears(myDog, 4);

function makeTea(cups, tea) {

 console.log("Brewing " + cups + " cups of " + tea);

}

var guests = 3;

makeTea(guests, "Earl Grey");

function secret() {

 console.log("The secret of life is 42");

}

secret();

function speak(kind) {

 var defaultSound = "";

 if (kind == "dog") {

 alert("Woof");

 } else if (kind == "cat") {

 alert("Meow");

 } else {

 alert(defaultSound);

 }

}

var pet = prompt("Enter a type of pet: ");

speak(pet);

120 Chapter 3

exercise solutions

Below you’ll find some JavaScript code, including variables, function definitions and function
calls. Your job is to identify the variables used in all the arguments, parameters, local
variables and global variables. Write the variable names in the appropriate boxes on the right.
Then circle any variables that are shadowed. Here’s our solution.

var x = 32;

var y = 44;

var radius = 5;

var centerX = 0;

var centerY = 0;

var width = 600;

var height = 400;

function setup(width, height) {

 centerX = width/2;

 centerY = height/2;

}

function computeDistance(x1, y1, x2, y2) {

 var dx = x1 - x2;

 var dy = y1 - y2;

 var d2 = (dx * dx) + (dy * dy);

 var d = Math.sqrt(d2);

 return d;

}

function circleArea(r) {

 var area = Math.PI * r * r;

 return area;

}

setup(width, height);

var area = circleArea(radius);

var distance = computeDistance(x, y, centerX, centerY);

alert("Area: " + area);

alert("Distance: " + distance);

Arguments

Parameters

Globals

Locals

x, y, radius,
centerX, centerY,
width, height, area,
distance

dx, dy, d2, d,
area

width, height,
x1, y1, x2, y2, r

width, height, radius,
x, y, centerX,
centerY,
“Area: ” + area,
“Distance: ”+ distance

Don’t forget the
arguments to the
alert function.

The local variable
area shadows the
global variable area

Don’t forget area
and distance. These
are globals too.

The parameters width
and height shadow the
global variables width
and height.

you are here 4 121

introducing functions

The Thing-A-Ma-JigThe Thing-A-Ma-Jig

JavaScript console

(120) clunk

120
Here’s our solution:

If you pass 5 to thingamajig, you’ll
see “clunk” in the console 120 times
(or you might see your console
abbreviate 120 clunks, like above),
and then the number 120 at the end.

JavaScript console

clank

1 JavaScript console

thunk

1 JavaScript console

(2) clunk

2
JavaScript console

(6) clunk

6 JavaScript console

(24) clunk

24 JavaScript console

(120) clunk

120

Thing-A-Ma-Jig of 0

Thing-A-Ma-Jig of 1

Thing-A-Ma-Jig of 2

Thing-A-Ma-Jig of 3

Thing-A-Ma-Jig of 4

Thing-A-Ma-Jig of 5

What about the
other values?

What does it all mean? We hear the Thing-A-Ma-Jig was invented by a curious chap
who was fascinated by rearranging words. You know like DOG rearranged is GOD, OGD,
DGO, GDO and ODG. So if a word has three letters the Thing-A-Ma-Jig says you
can make six total combinations from those letters. If you use the word “mixes” you
can make 120 combinations of letters, wow! Anyway, that’s what we heard. And here
we just thought it computed mathematical factorials! Who knew!?

Check out ‘factorial’ in wikipedia for more info!

The Thing-A-Ma-Jig is quite a contraption—it clanks and clunks and even thunks,
but what it really does, well, you’ve got us stumped. Coders claim they know how it

works. Can you uncrack the code and find its quirks?

122 Chapter 3

exercise solutions

Five Minute
Mystery
Solution

Why did Sherlock decide not to investigate the case? How
could he know that the criminal would never be able to
steal the money just by looking at the code? Is there one
problem with the code? Or more? Here’s our solution.

var balance = 10500;

var cameraOn = true;

function steal(balance, amount) {

 cameraOn = false;

 if (amount < balance) {

 balance = balance - amount;

 }

 return amount;

 cameraOn = true;

}

var amount = steal(balance, 1250);

alert("Criminal: you stole " + amount + "!");

balance is a global variable...

... but it’s shadowed
by this parameter.

So when you change the
balance in the function steal,
you’re not changing the actual
bank balance!

We’re returning the
amount stolen...

... but we’re not using it to
update the real balance in
the account. So the balance
of the bank account is the
same as it was originally.

The criminal thinks he stole
the money, but he didn’t!

And, in addition to not actually stealing any money,
the criminal forgets to turn the camera back
on, which is a dead giveaway to the police that
something nefarious is going on. Remember, when you
return from a function, the function stops executing,
so any lines of code after the return are ignored!

you are here 4 123

introducing functions

Who am I?

I get passed into a function.

I send values back to the calling code.

I’m the all important keyword.

I’m what receives arguments.

It really means ‘make a copy’.

I’m everywhere.

Another phrase for invoking a function.

Example of a function attached to an object.

alert and prompt are examples.

What functions are great for.

Where I can be seen.

I’m around when my function is.

argument

return

function

parameter

pass-by-value

global variable

function call

Math.random

built-in functions

code reuse

scope

local variable

A bunch of JavaScript attendees, in full costume, are playing a
party game, “Who am I?” They give you a clue, and you try to
guess who they are, based on what they say. Assume they always
tell the truth about themselves. Fill in the blank next to each
sentence with the name of one attendee. Here’s our solution.

Tonight’s attendees:

function, argument, return, scope, local variable, global
variable, pass-by-value, parameter, function call,
Math.random, built-in functions, code reuse.Solution

124 Chapter 3

exercise solutions

JavaScript cross Solution

S
1

R
2

P
3

C E
V
4

A R
5

I A B L E O U
E R P

6
A
7

S S B Y V
8

A L U E
T
9

T A
10

N Y W H E R E A
R U M G R
A R E U

11
N D E

12
F I N E D

C F
13

U N C T I O N M M A
I E E A B L

14
I
15

N R N I L O G
G
16

L O B A L S T L E C N
S S

17
H A D O W

L R
E
D

Across
4. A parameter acts like a _________ in the

body of a function. [VARIABLE]
6. JavaScript uses __________ when passing

arguments to functions. [PASSBYVALUE]
10. You can declare your functions __________

in your JavaScript file. [ANYWHERE]
11. What gets returned from a function without

a return statement. [UNDEFINED]
13. Local variables disappear when the

_________ returns. [FUNCTION]
16. If you forget to declare your locals, they'll

be treated like ________. [GLOBALS]
17. A local variable can __________ a global

variable. [SHADOW]

Down
1. A variable with global ________ is visible

everywhere. [SCOPE]
2. Use functions so you can _______ code

over and over again. [REUSE]
3. The variables that arguments land in when

they get passed to functions.
[PARAMETERS]

5. To get a value back from a function, use the
________ statement. [RETURN]

7. What gets passed to functions.
[ARGUMENTS]

8. When you reload your page, all your
__________ get re-initialized.
[VARIABLES]

9. ________ through your code means
following the execution line by line.
[TRACING]

this is a new chapter 125

Arrays

4 putting some order in your data

There’s more to JavaScript than numbers, strings and
booleans. So far you’ve been writing JavaScript code with primitives—

simple strings, numbers and booleans, like “Fido”, 23, and true. And you can do a

lot with primitive types, but at some point you’ve got to deal with more data. Say,

all the items in a shopping cart, or all the songs in a playlist, or a set of stars and

their apparent magnitude, or an entire product catalog. For that we need a little

more ummph. The type of choice for this kind of ordered data is a JavaScript array,

and in this chapter we’re going to walk through how to put your data into an array,

how to pass it around and how to operate on it. We’ll be looking at a few other

ways to structure your data in later chapters but let’s get started with arrays.

You come here often? Only when pushed.

126 Chapter 4

introducing bubbles-r-us

Can you help Bubbles-R-Us?
Meet the Bubbles-R-Us company. Their tireless research makes sure
bubble wands & machines everywhere blow the best bubbles. Today
they’re testing the “bubble factor” of several variants of their new
bubble solution; that is, they’re testing how many bubbles a given
solution can make. Here’s their data:

Each bubble solution was tested for the number of
bubbles it can create.

Each test tube
is labelled 0 to
9 and contains a
slightly different
bubble solution.

And here’s the
bubble factor
score for each
solution.

60 50 60 58 54 54 58 50 52 54

0 1 2 3 4 5 6 7 8 9

Of course you want to get all this data into JavaScript so you can
write code to help analyze it. But that’s a lot of values. How are you
going to construct your code to handle all these values?

you are here 4 127

putting some order in your data

My
bubble solution #2

is definitely going to be
the best.

How to represent multiple values in JavaScript
You know how to represent single values like strings, numbers and booleans with JavaScript,
but how do you represent multiple values, like all the bubble factor scores from the ten
bubble solutions? To do that we use JavaScript arrays. An array is a JavaScript type that can
hold many values. Here’s a JavaScript array that holds all the bubble factor scores:

var scores = [60, 50, 60, 58, 54, 54, 58, 50, 52, 54];

Here’s all ten values, grouped together into
an array, and assigned to the scores variable.

You can treat all the values as a whole, or you can access the individual scores when
you need to. Check this out:

var solution2 = scores[2];

alert("Solution 2 produced " + solution2 + " bubbles.");

Notice that arrays are zero-based. So the first bubble solution is solution #0 and has the score in scores[0], and likewise, the third bubble solution is solution #2 and has the score in scores[2].

To access an item of the array we use
this syntax: the variable name of the
array followed by the index of the item,
surrounded by square brackets.

One of the
Bubbles-R-Us
bubbleologists.

128 Chapter 4

intro to arrays

0 1 2 3 4

"v
an
il
la
"

"b
ut
te
rs
co
tc
h"

"l
av
en
de
r"

"c
ho
co
la
te
"

"c
oo
ki
e
do
ug
h"

How arrays work

flavors

Before we get on to helping Bubbles-R-Us, let’s make sure we’ve got
arrays down. As we said, you can use arrays to store multiple values
(unlike variables that hold just one value, like a number or a string). Most
often you’ll use arrays when you want to group together similar things,
like bubble factor scores, ice cream flavors, daytime temperatures or
even the answers to a set of true/false questions. Once you have a bunch
of values you want to group together, you can create an array that holds
them, and then access those values in the array whenever you need them.

var flavors = ["vanilla", "butterscotch", "lavender", "chocolate", "cookie dough"];

Each value has
an index number,
starting at 0.

The array
collects all these
values together.

Every index in the
array holds a value.The array is assigned

to a variable.

How to create an array
Let’s say you wanted to create an array that holds ice cream flavors.
Here’s how you’d do that:

Notice that each
item in the array is
separated by a comma.

Let’s assign the
array to a variable
named flavors.

To begin the array,
use the [character...

... and end the array
with the] character.

When you create an array, each item is placed at a location, or index, in
the array. With the flavors array, the first item, “vanilla”, is at index 0, the
second, “butterscotch”, is at index 1, and so on. Here’s a way to think
about an array:

and then list each
item of the array...

you are here 4 129

putting some order in your data

How to access an array item
Each item in the array has its own index, and that’s your key to both accessing and
changing the values in an array. To access an item just follow the array variable
name with an index, surrounded by square brackets. You can use that notation
anywhere you’d use a variable:

var flavorOfTheDay = flavors[2];

This evaluates to the value of the flavors array at index 2 (which is “lavender”), which is then assigned to the variable flavorOfTheDay.

Updating a value in the array
You can also use the array index to change a value in an array:

flavors[3] = "vanilla chocolate chip";
This sets the value of the item at index
3 (previously “chocolate”) to a new value,
“vanilla chocolate chip”.

So, after this line of code, your array will look like this:

0 1 2 3 4

"v
an
il
la
"

"b
ut
te
rs
co
tc
h"

"l
av
en
de
r"

"v
an
il
la
 c
ho
co
la
te
 c
hi
p"

"c
oo
ki
e
do
ug
h"

flavors

The value of the item at
index 3 has been changed.

To get an element from an array, you
need both the name of the array,
and the index of the value you want.

0 1 2 3 4

"v
an
il
la
"

"b
ut
te
rs
co
tc
h"

"l
av
en
de
r"

"c
ho
co
la
te
"

"c
oo
ki
e
do
ug
h"

flavors

flavorOfTheDay

"l
av
en
de
r"

flavorOfTheDay is assigned the value in flavors[2].

And remember, because the index starts at 0,
flavors[2] is the third item in the array.

130 Chapter 4

getting the length of an array

0 1 2 3 4

"v
an
il
la
"

"b
ut
te
rs
co
tc
h"

"l
av
en
de
r"

"v
an
il
la

ch
oc
ol
at
e
ch
ip
"

"c
oo
ki
e
do
ug
h"

flavors

How big is that array anyway?
Say someone hands you a nice big array with important data in it. You know
what’s in it, but you probably won’t know exactly how big it is. Luckily, every
array comes with its own property, length. We’ll talk more about properties
and how they work in the next chapter, but for now, a property is just a value
associated with an array. Here’s how you use the length property:

var numFlavors = flavors.length;

Every array has a property, length,
that contains the number of items
currently in the array.

To get the length of an
array, you use the name
of the array, then a “.”,
and then length.

Now numFlavors holds the number of
items in the array, in this case 5.

Notice that because we start numbering the
indices of the array at 0, the length of the
array will always be one more than the last index.

The length is 5 because there are 5 items.

var products = ["Choo Choo Chocolate", "Icy Mint", "Cake Batter", "Bubblegum"];

var last = ________________;

var recent = products[last];

The products array below holds the Jenn and Berry’s ice cream
flavors. The ice cream flavors were added to this array in the
order of their creation. Finish the code to determine the most
recent ice cream flavor they created.

you are here 4 131

putting some order in your data

<!doctype html>

<html lang="en">

<head>

 <title>Phrase-o-matic</title>

 <meta charset="utf-8">

 <script>

 function makePhrases() {

 var words1 = ["24/7", "multi-tier", "30,000 foot", "B-to-B", "win-win"];

 var words2 = ["empowered", "value-added", "oriented", "focused", "aligned"];

 var words3 = ["process", "solution", "tipping-point", "strategy", "vision"];

 var rand1 = Math.floor(Math.random() * words1.length);

 var rand2 = Math.floor(Math.random() * words2.length);

 var rand3 = Math.floor(Math.random() * words3.length);

 var phrase = words1[rand1] + " " + words2[rand2] + " " + words3[rand3];

 alert(phrase);

 }

 makePhrases();

 </script>

</head>

<body></body>

</html>

Try my new
Phrase-o-Matic and

you’ll be a slick talker
just like the boss or those

guys in marketing.

You didn’t think our serious business
application from Chapter 1 was serious
enough? Fine. Try this one, if you need
something to show the boss.

Check out this code for the
hot new Phrase-o-Matic app
and see if you can figure out
what it does before you go on...

132 Chapter 4

phrase-o-matic code walk-through

function makePhrases() {

}

makePhrases();

The Phrase-O-Matic
We hope you figured out this code is the perfect tool for creating
your next start-up marketing slogan. It has created winners like

“Win-win value-added solution” and “24/7 empowered process”
in the past and we have high hopes for more winners in the
future. Let’s see how this thing really works:

First, we define the makePhrases function, which we can call as many times as
we want to generate the phrases we want:

We call makePhrases once here, but we could call it
multiple times if we want more than one phrase.

With that out of the way we can write the code for the makePhrases function. Let’s start by
setting up three arrays. Each will hold words that we’ll use to create the phrases. In the next
step, we’ll pick one word at random from each array to make a three word phrase.

var words1 = ["24/7", "multi-tier", "30,000 foot", "B-to-B", "win-win"];

var words2 = ["empowered", "value-added", "oriented", "focused", "aligned"];

var words3 = ["process", "solution", "tipping-point", "strategy", "vision"];

We create a variable named words1, that we
can use for the first array.

1

2

All the code for makePhrases goes here, we’ll get to it in a sec...

We’re defining a function named
makePhrases, that we can call later.

We’re putting five strings in the array. Feel free to
change these to the latest buzzwords out there.

And here are two more arrays of words, assigned
to two new variables, words2 and words3.

you are here 4 133

putting some order in your data

We’re almost done; we have the phrase, now we just have to display it. We’re going
to use alert as usual.

alert(phrase);

6

3 Now we generate three random numbers, one for each of the three random words
we want to pick to make a phrase. Remember from Chapter 2 that Math.random
generates a number between 0 and 1 (not including 1). If we multiply that by the
length of the array, and use Math.floor to truncate the number, we get a number
between 0 and one less than the length of the array.

5

Okay, finish that last line of code, have one more look over it all
and feel that sense of accomplishment before you load it into your
browser. Give it a test drive and enjoy the phrases.

Here’s what ours
looks like!

var rand1 = Math.floor(Math.random() * words1.length);

var rand2 = Math.floor(Math.random() * words2.length);

var rand3 = Math.floor(Math.random() * words3.length);

var phrase = words1[rand1] + " " + words2[rand2] + " " + words3[rand3];

4 Now we create the slick marketing phrase by taking each randomly chosen word and
concatenating them all together, with a nice space in between for readability:

We define another variable to hold the phrase.
We use each random number to
index into the word arrays...

rand1 will be a number
between 0 and the last index
of the words1 array.
And likewise for rand2,
and rand3.

Just reload the page for endless start-up possibilities (okay, not endless, but work with us here, we’re trying to make this simple code exciting!).

134 Chapter 4

questions about arrays

Q: Does the order of items in an array
matter?

A: Most of the time, yes, but it depends.
In the Bubbles-R-Us scores array, the
ordering matters a lot, because the index of
the score in the array tells us which bubble
solution got that score—bubble solution
0 got score 60, and that score is stored
at index 0. If we mixed up the scores in
the array, then we’d ruin the experiment!
However, in other cases, the order may
not matter. For instance, if you’re using an
array just to keep a list of randomly selected
words and you don’t care about the order,
then it doesn’t matter which order they’re in
the array. But, if you later decide you want
the words to be in alphabetical order, then
the order will matter. So it really depends on
how you’re using the array. You’ll probably
find that ordering matters more often than
not when you use an array.

Q: How many things can you put into
an array?

A: Theoretically, as many as you want.
Practically, however, the number is limited
by the memory on your computer. Each
array item takes up a little bit of space in
memory. Remember that JavaScript runs in
a browser, and that browser is one of many
programs running on your computer. If you
keep adding items to an array, eventually
you’ll run out of memory space. However,
depending on the kind of items you’re putting
in your array, the maximum number of items
you can put into an array is probably in the
many thousands, if not millions, which you’re
unlikely to need most of the time. And keep
in mind that the more items you have the
slower your program will run, so you’ll want
to limit your arrays to reasonable sizes—say
a few hundred—most of the time.

Q: Can you have an empty array?

A: You can, and in fact, you’ll see an
example of using an empty array shortly. To
create an empty array, just write:

 var emptyArray = [];

If you start with an empty array, you can add
things to it later.

Q: So far we’ve seen strings and
numbers in an array; can you put other
things in arrays too?

A: You can; in fact, you can put just about
any value you’ll find in JavaScript in an array,
including numbers, strings, booleans, other
arrays, and even objects (we’ll get to this
later).

Q: Do all the values in an array have
to be the same type?

A: No they don’t; although typically we
do make the values all of the same type.
Unlike many other languages, there is no
requirement in JavaScript that all the values
in an array be of the same type. However,
if you mix up the types of the values in an
array, you need to be extra careful when
using those values. Here’s why: let’s say you
have an array with the values [1, 2, “fido”, 4,
5]. If you then write code that checks to see
if the values in the array are greater than,
say, 2, what happens when you check to see
if “fido” is greater than 2? To make sure you
aren’t doing something that doesn’t make
sense, you’d have to check the type of each
of the values before you used it in the rest
of your code. It’s certainly possible to do this
(and we’ll see later in the book how), but in
general, it’s a lot easier and safer if you just
use the same type for all the values in your
arrays.

Q: What happens if you try to access
an array with an index that is too big or
too small (like less than 0)?

A: If you have an array, like:

 var a = [1, 2, 3];

and you try to access a[10] or a[-1], in either
case, you’ll get the result undefined. So,
you’ll either want to make sure you’re using
only valid indices to access items in your
array, or you’ll need to check that the value
you get back is not undefined.

Q: So, I can see how to get the first
item in an array using index 0. But how
would I get the last item in an array? Do I
always have to know precisely how many
items are in my array?

A: You can use the length property to
get the last item of an array. You know that
length is always one greater than the last
index of the array, right? So, to get the last
item in the array, you can write:

 myArray[myArray.length - 1];

JavaScript gets the length of the array,
subtracts one from it, and then gets the item
at that index number. So if your array has 10
items, it will get the item at index 9, which is
exactly what you want. You’ll use this trick all
the time to get the last item in an array when
you don’t know exactly how many items are
in it.

you are here 4 135

putting some order in your data

Meanwhile, back at Bubbles-R-Us...

Hey, glad you guys are
here. We just got a lot of new
bubble tests run. Check out all the
new bubble scores! I really need some
help understanding this data. I'd
love for you to code up what I

sketched below.

The Bubbles-R-Us CEO

var scores = [60, 50, 60, 58, 54, 54,

 58, 50, 52, 54, 48, 69,

 34, 55, 51, 52, 44, 51,

 69, 64, 66, 55, 52, 61,

 46, 31, 57, 52, 44, 18,

 41, 53, 55, 61, 51, 44];

New bubble scores.

Hey, I really need this report to be able to
 make quick decisions

about which bubble solution to produce! Can you get this coded?

 - Bubbles-R-Us CEOBubbles-R-Us

Bubble solution #0 score: 6
0

Bubble solution #1 score: 5
0

Bubble solution #2 score: 6
0

Bubbles tests: 36

Highest bubble score: 69

Solutions with highest scor
e: #11, #18

 rest of scores here...

What we need to build.

136 Chapter 4

thinking about the bubble scores report

We need to start
by listing all the
solutions and their
corresponding scores.

Take some time to sketch out your ideas of how you’d create this little bubble score report. Take
each item in the report separately and think of how you’d break it down and generate the right
output. Make your notes here.

Then we need to print
the total number of
bubble scores.

Let’s take a closer look at what the CEO is looking for:

Hey, I really need this report to be able to make quick decisions
about which bubble solution to produce! Can you get this coded?

 - Bubbles-R-Us CEO
Bubbles-R-Us

Bubble solution #0 score: 60

Bubble solution #1 score: 50

Bubble solution #2 score: 60

Bubbles tests: 36

Highest bubble score: 69

Solutions with highest score: #11, #18

 rest of scores here...

Followed by the
highest score and
each solution that
has that score.

you are here 4 137

putting some order in your data

Cubicle Conversation

Judy: The first thing we need to do is display every
score along with its solution number.

Joe: And the solution number is just the index of the
score in the array, right?

Judy: Oh, yeah, that’s totally right.

Frank: Slow down a sec. So we need to take each
score, print its index, which is the bubble solution
number, and then print the corresponding score.

Judy: You’ve got it, and the score is just the
corresponding value in the array.

Joe: So, for bubble solution #10, its score is just scores[10].

Judy: Right.

Frank: Okay, but there are a lot of scores. How do we write code to output all of them?

Judy: Iteration, my friend.

Frank: Oh, you mean like a while loop?

Judy: Right, we loop through all the values from zero to the length... oh, I mean the length
minus one of course.

Joe: This is starting to sound very doable. Let’s write some code; I think we know what we’re
doing.

Judy: That works for me! Let’s do it, and then we’ll come back to the rest of the report.

Let’s take a look at
this report and see how
we can tackle coding it...

Frank Judy Joe

138 Chapter 4

array iteration

 var scores = [60, 50, 60, 58, 54, 54, 58, 50, 52, 54, 48, 69,

 34, 55, 51, 52, 44, 51, 69, 64, 66, 55, 52, 61,

 46, 31, 57, 52, 44, 18, 41, 53, 55, 61, 51, 44];

 var output;

 var i = 0;

 while (i < scores.length) {

 output = "Bubble solution #" + i + " score: " + scores[i];

 console.log(output);

 i = i + 1;

 }

Create a variable to keep track
of the current index.

60 50 60 58 54 54 58 50 52 54

0 1 2 3 4 5 6 7 8 9

How to iterate over an array
Your goal is to produce some output that looks like this:

Bubble solution #0 score: 60
Bubble solution #1 score: 50
Bubble solution #2 score: 60
.
.
.
Bubble solution #35 score: 44

Scores 3 through 34 will be
here... we’re saving some trees
(or bits depending on which
version of the book you have).

We’ll do that by outputting the score at index zero, and then we’ll do the
same for index one, two, three and so on, until we reach the last index in
the array. You already know how to use a while loop; let’s see how we can
use that to output all the scores: And then we’ll show you a

better way in a sec...

And keep looping while our index is less
than the length of the array.

Then create a string to use as
a line of output that includes
the bubble solution number
(which is just the array index)
and the score.

Then we’ll use console.log
to output the string.

And finally, increment the index
by one before looping again.

We're using this variable in the loop below to create a string to output.

you are here 4 139

putting some order in your data

while (i < hasBubbleGum.leng
th)

var products = ["Ch
oo Choo Chocolate",

 "Ic
y Mint", "Cake Batt

er",

 "Bu
bblegum"];

i = i + 1;

var hasBubbleGum = [false,

 false,

 false,

 true];

var i = 0;

i = i + 2;

{

{

}

}

if (hasBubbleGum[i]
)

{

console.log(products[i] +
 " contains bubble gum");

Code Magnets

while (i > hasBubbleGum.length)

Rearrange the magnets here.

We’ve got code for testing to see which ice
cream flavors have bubblegum pieces in
them. We had all the code nicely laid out
on our fridge using fridge magnets, but the
magnets fell on the floor. It’s your job to put
them back together. Be careful; a few extra
magnets got mixed in. Check your answer at
the end of the chapter before you go on.

JavaScript console
Bubblegum contains bubble gum

Here’s the output
we’re expecting.

140 Chapter 4

using a for loop for iteration

for (var i = 0; i < scores.length; i = i + 1) {

 output = "Bubble solution #" + i + " score: " + scores[i];

 console.log(output);

}

But wait, there’s a better way to
iterate over an array
We should really apologize. We can’t believe it’s already Chapter 4 and we haven’t even
introduced you to the for loop. Think of the for loop as the while loop’s cousin. The two
basically do the same thing, except the for loop is usually a little more convenient to use.
Check out the while loop we just used and we’ll see how that maps into a for loop.

A for loop
starts with the
keyword for.

In the parentheses, there
are three parts. The
first part is the loop
variable INITIALIZATION.
This initialization happens
only once, before the for
loop starts.

The second part is the
CONDITIONAL test. Each
time we loop, we perform this
test, and if it is false, we stop.

And the third part is
where we INCREMENT
the counter. This happens
once per loop, after all the
statements in the BODY.

The BODY goes here.
Notice there are no
changes other than
moving the increment of i
into the for statement.

 var i = 0;

 while (i < scores.length) {

 output = "Bubble solution #" + i + " score: " + scores[i];

 console.log(output);

 i = i + 1;

 }

First we INITIALIZED a counter.
Then we tested that counter in a CONDITIONAL expression.

We also had a BODY to execute; that is, all the
statements between the { and }.

And finally, we INCREMENTED the counter.

Now let’s look at how the for loop makes all that so much easier:

A

A

C

C

B

B

you are here 4 141

putting some order in your data

Rewrite your fridge magnet code (from two pages
back) so that it uses a for loop instead of a while
loop. If you need a hint, refer to each piece of the
while loop on the previous page and see how it
maps to the corresponding location in the for loop.

Your code goes here.

var products = ["Ch
oo Choo Chocolate",

 "Ic
y Mint", "Cake Batt

er",

 "Bu
bblegum"];

var hasBubbleGum = [false,

 false,

 false,

 true];

var i = 0;

while (i < hasBubbleGum.leng
th) {

if (hasBubbleGum[i]
) {

console.log(products[i] +
 " contains bubble gum");

}

i = i + 1;

}

142 Chapter 4

putting the code together

<!doctype html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>Bubble Factory Test Lab</title>

 <script>

 var scores = [60, 50, 60, 58, 54, 54,
 58, 50, 52, 54, 48, 69,
 34, 55, 51, 52, 44, 51,
 69, 64, 66, 55, 52, 61,
 46, 31, 57, 52, 44, 18,
 41, 53, 55, 61, 51, 44];

 var output;

 for (var i = 0; i < scores.length; i = i + 1) {

 output = "Bubble solution #" + i +
 " score: " + scores[i];

 console.log(output);

 }

 </script>

</head>

<body></body>

</html>

We’ve got the standard HTML stuff
here for a web page. We don’t need
much; just enough to create a script.

Here’s our bubble scores array.

Here's the for loop we're using to iterate
through all the bubble solution scores.

We’ve got all the pieces for
the first part of the report,

let’s put this all together...

Each time through the loop, we create
a string with the value of i, which is the
bubble solution number, and scores[i], which
is the score that bubble solution got.

Then we display the string in the console. And that's it! Time to run this report.

(Also notice we split the string up across
two lines here. That's okay as long as you
don't create a new line in between the
quotes that delimit a string. Here, we did it
after a concatenation operator (+), so it's
okay. Be careful to type it in exactly as
you see here.)

you are here 4 143

putting some order in your data

Test drive the bubble report
Save this file as “bubbles.html” and load it into your
browser. Make sure you’ve got the console visible (you
might need to reload the page if you activate the console
after you load the page), and check out the brilliant
report you just generated for the Bubbles-R-Us CEO.

Just what the CEO ordered.

JavaScript console
Bubble solution #0 score: 60
Bubble solution #1 score: 50
Bubble solution #2 score: 60
Bubble solution #3 score: 58
Bubble solution #4 score: 54
Bubble solution #5 score: 54
Bubble solution #6 score: 58
Bubble solution #7 score: 50
Bubble solution #8 score: 52
Bubble solution #9 score: 54
Bubble solution #10 score: 48
Bubble solution #11 score: 69
Bubble solution #12 score: 34
Bubble solution #13 score: 55
Bubble solution #14 score: 51
Bubble solution #15 score: 52
Bubble solution #16 score: 44
Bubble solution #17 score: 51
Bubble solution #18 score: 69
Bubble solution #19 score: 64
Bubble solution #20 score: 66
Bubble solution #21 score: 55
Bubble solution #22 score: 52
Bubble solution #23 score: 61
Bubble solution #24 score: 46
Bubble solution #25 score: 31
Bubble solution #26 score: 57
Bubble solution #27 score: 52
Bubble solution #28 score: 44
Bubble solution #29 score: 18
Bubble solution #30 score: 41
Bubble solution #31 score: 53
Bubble solution #32 score: 55
Bubble solution #33 score: 61
Bubble solution #34 score: 51
Bubble solution #35 score: 44

It's nice to see all the bubble scores in a report, but it's
still hard to find the highest scores. We need to work
on the rest of the report
requirements to make it a
little easier to find the winner.

144 Chapter 4

fireside chat between for and while

Tonight’s talk: The while and
for loop answer the question

“Who’s more important?”

The WHILE loop

What, are you kidding me? Hello? I’m the general
looping construct in JavaScript. I’m not married to
looping with a silly counter. I can be used with any
type of conditional. Did anyone notice I was taught
first in this book?

And that’s another thing, have you noticed that the
FOR loop has no sense of humor? I mean if we all
had to do skull-numbing iteration all day I guess
we’d all be that way.

Oh, I don’t think that could possibly be true.

This book just showed that FOR and WHILE loops
are pretty much the same thing, so how could that
be?

The FOR loop

I don’t appreciate that tone.

Cute. But have you noticed that nine times out of
ten, coders use FOR loops?

Not to mention, doing iteration over, say, an array
that has a fixed number of items with a WHILE
loop is just a bad, clumsy practice.

Ah, so you admit we’re more equal than you let on
huh?

I’ll tell you why...

you are here 4 145

putting some order in your data

The WHILE loop

Well, isn’t that nice and neat of you. Hey, most of
the iteration I see doesn’t even include counters; it’s
stuff like:

 while (answer != "forty-two")

try that with a FOR loop!

Hah, I can’t believe that even works.

Lipstick on a pig.

Not only better, prettier.

The FOR loop

When you use a WHILE loop you have to initialize
your counter and increment your counter in
separate statements. If, after lots of code changes,
you accidentally moved or deleted one of these
statements, well, then things could get ugly. But with
a FOR loop, everything is packaged right in the
FOR statement for all to see and with no chance of
things getting changed or lost.

Okay:

 for (;answer != "forty-two";)

Oh, it does.

So that’s all you got? You’re better when you’ve got
a general conditional?

Oh, I didn’t realize this was a beauty contest as well.

146 Chapter 4

post increment

It's that time again....
Can we talk about your verbosity?

You’ve been writing lots of code that looks like this:

myImportantCounter = myImportantCounter + 1;

After this statement completes, myImportantCounter is one greater than before.

Here we're taking the variable
and incrementing it by one.

In fact, this statement is so common there’s a shortcut for it in JavaScript. It’s called the post-increment
operator, and despite its fancy name, it is quite simple. Using the post-increment operator, we can replace
the above line of code with this:

myImportantCounter++;

After this statement completes, myImportantCounter is one greater than before.

Just add “++" to the variable name.

Of course it just wouldn’t feel right if there wasn’t a post-decrement operator as well. You can use the post-
decrement operator on a variable to reduce its value by one. Like this:

myImportantCounter--;

After this statement completes, myImportantCounter is one less than before.

Just add “--" to the variable name.

And why are we telling you this now? Because it’s commonly used with for statements. Let’s clean up our
code a little using the post-increment operator…

Assume myImportantCounter
contains a number, like 0.

you are here 4 147

putting some order in your data

 var scores = [60, 50, 60, 58, 54, 54,
 58, 50, 52, 54, 48, 69,
 34, 55, 51, 52, 44, 51,
 69, 64, 66, 55, 52, 61,
 46, 31, 57, 52, 44, 18,
 41, 53, 55, 61, 51, 44];

 for (var i = 0; i < scores.length; i++) {

 var output = "Bubble solution #" + i +
 " score: " + scores[i];

 console.log(output);

 }

Redoing the for loop with the
post-increment operator
Let’s do a quick rewrite and test to make sure the code works
the same as before:

All we’ve done is update where we
increment the loop variable with
the post-increment operator.

Quick test drive
Time to do a quick test drive to make sure the change to use the
post-increment operator works. Save your file, “bubbles.html”, and
reload. You should see the same report you saw before.

The report looks exactly the same.

JavaScript console
Bubble solution #0 score: 60
Bubble solution #1 score: 50
Bubble solution #2 score: 60
 ...
Bubble solution #34 score: 51
Bubble solution #35 score: 44

We’re saving a few trees
and not showing all the
bubble solution scores, but
they are all there.

148 Chapter 4

planning the rest of the report

Cubicle Conversation
Continued...

Judy: Right, and the first
thing we need to do is
determine the total number
of bubble tests. That’s easy;
it’s just the length of the scores
array.

Joe: Oh, right. We’ve got to
find the highest score too, and
then the solutions that have the
highest score.

Judy: Yeah, that last one is going to be the toughest. Let’s work out
finding the highest score first.

Joe: Sounds like a good place to start.

Judy: To do that I think we just need to maintain a highest score variable that keeps
track as we interate through the array. Here, let me write some pseudocode:

We’ve got all
the bubble solution

scores displaying, now we
just need to generate the

rest of the report.

Hey, I really need this report to be able to make quick decisions about which bubble solution to produce! Can you get this coded? - Bubbles-R-Us CEO

Bubbles-R-Us

Bubble solution #0 score: 60Bubble solution #1 score: 50Bubble solution #2 score: 60

Bubbles tests: 36
Highest bubble score: 69Solutions with highest score: #11, #18

 rest of scores here...

DECLARE a variable highScore and set to zero.

FOR: var i=0; i < scores.length; i++

 DISPLAY the bubble solution score[i]

 IF scores[i] > highScore

 SET highScore = scores[i];

 END IF

END FOR

DISPLAY highScore

Joe: Oh nice; you did it with just a few lines added to our existing code.

Judy: Each time through the array we look to see if the current score is greater than
highScore, and if so, that’s our new high score. Then, after the loop ends we just
display the high score.

Add a variable to hold the high score.

Check each time through the loop to
see if we have a higher score, and if
so that's our new high score.

After the loop we just display the high score.

you are here 4 149

putting some order in your data

var scores = [60, 50, 60, 58, 54, 54,

 58, 50, 52, 54, 48, 69,

 34, 55, 51, 52, 44, 51,

 69, 64, 66, 55, 52, 61,

 46, 31, 57, 52, 44, 18,

 41, 53, 55, 61, 51, 44];

var highScore = _____;

var output;

for (var i = 0; i < scores.length; i++) {

 output = "Bubble solution #" + i + " score: " + scores[i];

 console.log(output);

 if (_____________ > highScore) {

 _____________ = scores[i];

 }

}

console.log("Bubbles tests: " + ____________);

console.log("Highest bubble score: " + _____________);

Go ahead and implement the pseudocode on the previous page to find the
highest score by filling in the blanks in the code below. Once you’re done,
give it a try in the browser by updating the code in “bubbles.html” and
reloading the page. Check the results in the console, and fill in the blanks in
our console display below with the number of bubble tests and the highest
score. Check your answer at the end of the chapter before you go on.

JavaScript console
Bubble solution #0 score: 60
Bubble solution #1 score: 50
Bubble solution #2 score: 60
 ...
Bubble solution #34 score: 51
Bubble solution #35 score: 44
Bubbles tests: ________
Highest bubble score: _______

Fill in the blanks to complete the code here...

... and then fill in the blanks showing the
output you get in the console.

150 Chapter 4

adding the highest score

Hey, I really need this report to be able to make quick decisions
about which bubble solution to produce! Can you get this coded?
 - Bubbles-R-Us CEO

Bubbles-R-Us

Bubble solution #0 score: 60

Bubble solution #1 score: 50

Bubble solution #2 score: 60

Bubbles tests: 36

Highest bubble score: 69

Solutions with highest score: 11, 18

 rest of scores here...

Hey you guys are almost
there! All you’ve got left is collecting
up all the solutions with highest score and

printing them. Remember, there might be
more than one.

Remember here's
what we have left.

"More than one"...hmmm. When we
need to store more than one thing what do
we use? An array, of course. So can we iterate
through the scores array looking for only scores
that match the highest score, and then add
them to an array that we can later display in
the report? You bet we can, but to do that we’ll
have to learn how to create a brand new, empty
array, and then understand how to add new
elements to it.

you are here 4 151

putting some order in your data

Creating an array from scratch
(and adding to it)
Before we take on finishing this code, let’s get a sense for how to create
a new array, and how to add new items to it. You already know how to
create an array with values, like this:

 var genres = ["80s", "90s", "Electronic", "Folk"];

This is called an array literal, because
we're literally writing out what goes
in the array.

But you can also omit the initial items and just create an empty array:

 var genres = [];
A new array, all ready to go with no
items and a length of zero.

This is an array literal too, it just doesn’t have anything in it (yet).

And you already know how to add new values to an array. To do that you
just assign a value to an item at an index, like this:

 var genres = [];

 genres[0] = "Rockabilly";

 genres[1] = "Ambient";

 var size = genres.length;

A new array item is created and it
holds the string “Rockabilly".

And a second array item is created
that holds the string “Ambient".

And here size holds the value 2, the
length of the array.

Now when adding new items you have to be careful about which index you’re
adding. Otherwise you’ll create a sparse array, which is an array with “holes” in
it (like an array with values at 0 and 2, but no value at 1). Having a sparse array
isn’t necessarily a bad thing, but it does require special attention. For now, there’s
another way to add new items without worrying about the index, and that’s push.
Here’s how it works:

 var genres = [];

 genres.push("Rockabilly");

 genres.push("Ambient");

 var size = genres.length;

Creates a new item in the index at the end of the array
(which happens to be 0) and sets its value to “Rockabilly".

Creates another new item at the end of the array (in
this case, at index 1) and sets the value to “Ambient".

152 Chapter 4

questions about iteration and arrays

Q: The for statement contains a
variable declaration and initialization in
the first part of the statement. You said
we should put our variable declarations
at the top. So, what gives?

A: Yes, putting your variable
declarations at the top (of your file, if they
are global, or of your function if they are
local) is a good practice. However, there
are times when it makes sense to declare
a variable right where you’re going to use
it, and a for statement is one of those times.
Typically, you use a loop variable, like i,
just for iterating, and once the loop is done,
you’re done with that variable. Now, you
might use i later in your code, of course,
but typically you won’t. So, in this case, just
declaring it right in the for statement keeps
things tidy.

Q: What does the syntax myarray.
push(value) actually mean?

A: Well, we’ve been keeping a little
secret from you: in JavaScript, an array is
actually a special kind of object. As you’ll
learn in the next chapter, an object can
have functions associated with it that act on
the object. So, think of push as a function
that can act on myarray. In this case, what
that function does is add a new item to
the array, the item that you pass as an
argument to push. So, if you write
 genres.push("Metal");
you’re calling the function push and
passing it a string argument, “Metal”. The
push function takes that argument and
adds it as a new value on the end of the
genres array. When you see
myarray.push(value) just think, “I’m
pushing a new value on the end of my
array.”

Q: Can you say a little more about
what a sparse array is?

A: A sparse array is just an array that
has values at only a few indices and no
values in between. You can create a sparse
array easily, like this:
 var sparseArray = [];
 sparseArray[0] = true;
 spraseArray[100] = true;
In this example, the sparseArray has only
two values, both true, at indices 0 and
100.The values at all the other indices are
undefined. The length of the array is 101
even though there are only two values.

Q: Say I have an array of length 10,
and I add a new item at index 10000,
what happens with indices 10 through
9999?

A: All those array indices get the value
undefined. If you remember, undefined
is the value assigned to a variable that
you haven’t initialized. So, think of this as
if you’re creating 9989 variables, but not
initializing them. Remember that all those
variables take up memory in your computer,
even if they don’t have a value, so make
sure you have a good reason to create a
sparse array.

Q: So, if I’m iterating through an
array, and some of the values are
undefined, should I check to make sure
before I use them?

A: If you think your array might be
sparse, or even have just one undefined
value in it, then yes, you should probably
check to make sure that the value at an
array index is not undefined before you use
it. If all you’re doing is displaying

the value in the console, then it’s no big
deal, but it’s much more likely that you’ll
actually want to use that value somehow,
perhaps in a calculation of some kind. In
that case, if you try to use undefined, you
might get an error, or at the very least,
some unexpected behavior. To check for
undefined, just write:
 if (myarray[i] == undefined) {
 ...
 }
Notice there are no quotes around
undefined (because it’s not a string, it’s a
value).

Q: All the arrays we’ve created so far
have been literal. Is there another way to
create an array?

A: Yes. You may have seen the syntax:
 var myarray = new Array(3);
What this does is create a new array, with
three empty spots in it (that is, an array
with length 3, but no values yet). Then you
can fill them, just like you normally would,
by providing values for myarray at indices 0,
1, and 2. Until you add values yourself, the
values in myarray are undefined.

An array created this way is just the same
as an array literal, and in practice, you’ll
find yourself using the literal syntax more
often, and that’s what we’ll tend to use in
the rest of the book.

And don’t worry about the details of the
syntax above for now (like “new” and why
Array is capitalized); we’ll get to all that
later!

you are here 4 153

putting some order in your data

Judy: Yes, we’ll start with an empty array to hold the solutions with the
highest scores, and add each solution that has that high score one at a time
to it as we iterate through the scores array.

Frank: Great, let’s get started.

Judy: But hold on a second… I think we might need a separate loop.

Frank: We do? Seems like there should be a way to do it in our existing
loop.

Judy: Yup, I’m sure we do. Here’s why: we have to know what the highest
score is before we can find all the solutions that have that highest score. So
we need two loops: one to find the highest score, which we’ve already
written, and then a second one to find all the solutions that have that score.

Frank: Oh, I see. And in the second loop, we’ll compare each score to
the highest score, and if it matches, we’ll add the index of the bubble
solution score to the new array we’re creating for the solutions with the
highest scores.

Judy: Exactly! Let’s do it.

Now that we know how to
add items to an array we can finish up
this report. We can just create the array

of the solutions with the highest score as we
iterate through the scores array to find the

highest bubble score, right?

Can you write the loop to find all the scores that match the high score? Give it a
shot below before you turn the page to see the solution and give it a test drive.

var bestSolutions = [];

for (var i = 0; i < scores.length; i++) {

}

Your code here.

Remember, the variable highScore has the highest
score in it; you can use that in the code below.

Here’s the new array we’ll use to store the bubble
solutions with the highest score.

154 Chapter 4

exercise solution

var bestSolutions = [];

for (var i = 0; i < scores.length; i++) {
 if (scores[i] == highScore) {

 bestSolutions.push(i);

 }
}

console.log("Solutions with the highest score: " + bestSolutions);

Again, we're starting by creating a
new array that will hold all the bubble
solutions that match the highest score.

Each time through the loop, we
compare the score at index i with
the highScore and if they are equal,
then we add that index to the
bestSolutions array using push.

And finally, we can display the bubble solutions with the highest scores. Notice we’re
using console.log to display the bestSolutions array. We could create another loop to
display the array items one by one, but, luckily, console.log will do this for us (and, if
you look at the output, it also adds commas between the array values!).

Can you write the loop to find all the scores that match the high score?
Here’s our solution.

Next, we iterate through the entire
scores array, looking for those items
with the highest score.

Take a look at the code in the Sharpen exercise above. What if you woke up and push no longer
existed? Could you rewrite this code without using push? Work that code out here:

you are here 4 155

putting some order in your data

Test drive the final report

var scores = [60, 50, 60, 58, 54, 54,
 58, 50, 52, 54, 48, 69,
 34, 55, 51, 52, 44, 51,
 69, 64, 66, 55, 52, 61,
 46, 31, 57, 52, 44, 18,
 41, 53, 55, 61, 51, 44];

var highScore = 0;
var output;
for (var i = 0; i < scores.length; i++) {
 output = "Bubble solution #" + i + " score: " + scores[i];
 console.log(output);
 if (scores[i] > highScore) {
 highScore = scores[i];
 }
}
console.log("Bubbles tests: " + scores.length);
console.log("Highest bubble score: " + highScore);

var bestSolutions = [];
for (var i = 0; i < scores.length; i++) {
 if (scores[i] == highScore) {
 bestSolutions.push(i);
 }
}
console.log("Solutions with the highest score: " + bestSolutions);

Go ahead and add the code to generate the bubble solutions with the highest score to your
code in “bubbles.html” and run another test drive. All the JavaScript code is shown below:

JavaScript console
Bubble solution #0 score: 60
Bubble solution #1 score: 50
 ...
Bubble solution #34 score: 51
Bubbles tests: 36
Highest bubble score: 69
Solutions with the highest score: 11,18

And the winners are...
Bubble solutions #11 and #18 both have a high score of 69! So they are
the best bubble solutions in this batch of test solutions.

156 Chapter 4

rethinking the code with functions

We spent a
lot of time in the last

chapter talking about functions.
How come we’re not using any?

You're right, we should be. Given
you just learned functions, we wanted to get
the basics of arrays out of the way before
employing them. That said, you always want
to think about which parts of your code you
can abstract away into a function. Not only
that, but say you wanted to reuse, or let others
reuse, all the work that went into writing the
bubble computations—you’d want to give other
developers a nice set of functions they could
work with.

Let’s go back to the Bubble Score code and
refactor it into a set of functions. By refactor we
mean we’re going to rework how it’s organized,
to make it more readable and maintainable, but
we’re going to do it without altering what the
code does. In other words, when we’re done,
the code will do exactly what it does now but
it’ll be a lot better organized.

you are here 4 157

putting some order in your data

A quick survey of the code...
Let’s get an overview of the code we’ve written and figure
out which pieces we want to abstract into functions:

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Bubble Factory Test Lab</title>
 <script>
 var scores = [60, 50, 60, 58, 54, 54,
 58, 50, 52, 54, 48, 69,
 34, 55, 51, 52, 44, 51,
 69, 64, 66, 55, 52, 61,
 46, 31, 57, 52, 44, 18,
 41, 53, 55, 61, 51, 44];

 var highScore = 0;
 var output;

 for (var i = 0; i < scores.length; i++) {
 output = "Bubble solution #" + i + " score: " + scores[i];
 console.log(output);
 if (scores[i] > highScore) {
 highScore = scores[i];
 }
 }
 console.log("Bubbles tests: " + scores.length);
 console.log("Highest bubble score: " + highScore);

 var bestSolutions = [];

 for (var i = 0; i < scores.length; i++) {
 if (scores[i] == highScore) {
 bestSolutions.push(i);
 }
 }

 console.log("Solutions with the highest score: " + bestSolutions);
 </script>
</head>
<body> </body>
</html>

Here’s the Bubbles-R-Us code.

We don’t want to declare scores inside the
functions that operate on scores because these are

going to be different for each use of the function

s.
Instead, we’ll pass the scores as an argument into
the functions, so the functions can use any scores
array to generate results.

We use this first chunk
of code to output each
score and at the same time
compute the highest score in
the array. We could put this
in a printAndGetHighScore
function.

And we use this second chunk of code
to figure out the best results given
a high score. We could put this in a
getBestResults function.

158 Chapter 4

refactoring code with functions

Writing the printAndGetHighScore function
We’ve got the code for the printAndGetHighScore function already. It’s just
the code we’ve already written, but to make it a function we need to think through
what arguments we’re passing it, and if it returns anything back to us.

Now, passing in the scores array seems like a good idea because that way, we can
reuse the function on other arrays with bubble scores. And we want to return the
high score that we compute in the function, so the code that calls the function can
do interesting things with it (and, after all, we’re going to need it to figure out the
best solutions).

Oh, and another thing: often you want your functions to do one thing well. Here
we’re doing two things: we’re displaying all the scores in the array and we’re also
computing the high score. We might want to consider breaking this into two
functions, but given how simple things are right now we’re going to resist the
temptation. If we were working in a professional environment we might reconsider
and break this into two functions, printScores and getHighScore. But for
now, we’ll stick with one function. Let’s get this code refactored:

function printAndGetHighScore(scores) {

 var highScore = 0;

 var output;

 for (var i = 0; i < scores.length; i++) {

 output = "Bubble solution #" + i + " score: " + scores[i];

 console.log(output);

 if (scores[i] > highScore) {

 highScore = scores[i];

 }

 }

 return highScore;

}

We’ve created a function that expects
one argument, the scores array.

This code is exactly the same.
Well, actually it LOOKS exactly
the same, but it now uses the
parameter scores rather than the global variable scores.

And we’ve added one line here to
return the highScore to the code
that called the function.

you are here 4 159

putting some order in your data

Now, we need to change the rest of the code to use our new function. To do so, we
simply call the new function, and set the variable highScore to the result of the
printAndGetHighScore function:

Refactoring the code using printAndGetHighScore

<!doctype html>
<html lang="en">
<head>
 <title>Bubble Factory Test Lab</title>
 <meta charset="utf-8">
 <script>
 var scores = [60, 50, 60, 58, 54, 54, 58, 50, 52, 54, 48, 69,
 34, 55, 51, 52, 44, 51, 69, 64, 66, 55, 52, 61,
 46, 31, 57, 52, 44, 18, 41, 53, 55, 61, 51, 44];

 function printAndGetHighScore(scores) {
 var highScore = 0;
 var output;
 for (var i = 0; i < scores.length; i++) {
 output = "Bubble solution #" + i + " score: " + scores[i];
 console.log(output);
 if (scores[i] > highScore) {
 highScore = scores[i];
 }
 }
 return highScore;
 }

 var highScore = printAndGetHighScore(scores);
 console.log("Bubbles tests: " + scores.length);
 console.log("Highest bubble score: " + highScore);

 var bestSolutions = [];

 for (var i = 0; i < scores.length; i++) {
 if (scores[i] == highScore) {
 bestSolutions.push(i);
 }
 }

 console.log("Solutions with the highest score: " + bestSolutions);
 </script>
</head>
<body> </body>
</html>

Here's our new
function, all ready
to use.

And now we just call the function,
passing in the scores array. We
assign the value it returns to the
variable highScore.

Now we need to refactor this
code into a function and make
the appropriate changes to the
rest of the code.

160 Chapter 4

exercise in refactoring code

function getBestResults(__________, ____________) {

 var bestSolutions = ______;

 for (var i = 0; i < scores.length; i++) {

 if (___________ == highScore) {

 bestSolutions.__________;

 }

 }

 return _______________;

}

var bestSolutions = _____________(scores, highScore);

console.log("Solutions with the highest score: " + bestSolutions);

var bestSolutions = [];
for (var i = 0; i < scores.length; i++) {
 if (scores[i] == highScore) {
 bestSolutions.push(i);
 }

}

console.log("Solutions with the highest score: " + bestSolutions);

Here's the original
code in case you need
to refer to it.

We've already started this but we
need your help to finish it!

Let’s work through this next one together. The goal is to write a function to create an
array of bubble solutions that have the high score (and there might be more than one, so
that's why we're using an array). We’re going to pass this function the scores array and the
highScore we computed with printAndGetHighScore. Finish the code below. You’ll find the
answer on the next page but don’t peek! Do the code yourself first, so you really get it.

you are here 4 161

putting some order in your data

Once you’ve completed refactoring your code, make all the changes to “bubbles.html”, just
like we have below, and reload the bubble report. You should get exactly the same results
as before. But now you know your code is more organized and reusable. Create your own
scores array and try some reuse!

Putting it all together...

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Bubble Factory Test Lab</title>
 <script>
 var scores = [60, 50, 60, 58, 54, 54, 58, 50, 52, 54, 48, 69,
 34, 55, 51, 52, 44, 51, 69, 64, 66, 55, 52, 61,
 46, 31, 57, 52, 44, 18, 41, 53, 55, 61, 51, 44];

 function printAndGetHighScore(scores) {
 var highScore = 0;
 var output;
 for (var i = 0; i < scores.length; i++) {
 output = "Bubble solution #" + i + " score: " + scores[i];
 console.log(output);
 if (scores[i] > highScore) {
 highScore = scores[i];
 }
 }
 return highScore;
 }

 function getBestResults(scores, highScore) {
 var bestSolutions = [];
 for (var i = 0; i < scores.length; i++) {
 if (scores[i] == highScore) {
 bestSolutions.push(i);
 }
 }
 return bestSolutions;
 }

 var highScore = printAndGetHighScore(scores);
 console.log("Bubbles tests: " + scores.length);
 console.log("Highest bubble score: " + highScore);

 var bestSolutions = getBestResults(scores, highScore);
 console.log("Solutions with the highest score: " + bestSolutions);

 </script>
</head>
<body> </body>
</html>

Okay, here's the new
getBestResults function.

And we use the result of
that function to display the
best solutions in the report.

162 Chapter 4

more bubble computing

var costs = [.25, .27, .25, .25, .25, .25,

 .33, .31, .25, .29, .27, .22,

 .31, .25, .25, .33, .21, .25,

 .25, .25, .28, .25, .24, .22,

 .20, .25, .30, .25, .24, .25,

 .25, .25, .27, .25, .26, .29];

var scores = [60, 50, 60, 58, 54, 54, 58, 50, 52, 54, 48, 69, ..., 44];

var costs = [.25, .27, .25, .25, .25, .25, .33, .31, .25, .29, .27, .22, ..., .29];

So, what’s the job here? It’s to take the leading bubble solutions—that is, the ones
with the highest bubble scores—and choose the lowest cost one. Now, luckily, we’ve
been given a costs array that mirrors the scores array. That is, the bubble solution
score at index 0 in the scores array has the cost at index 0 in the costs array (.25),
the bubble solution at index 1 in the scores array has a cost at index 1 in the costs
array (.27), and so on. So, for any score you’ll find its cost in the costs array at the
same index. Sometimes we call these parallel arrays:

The cost at 0 is the cost of
the bubble solution at 0...

And likewise for the other cost and score values in the arrays.

Great job! Just one more thing...
can you figure out the most cost effective
bubble solution? With that final bit of data,
we’ll definitely take over the entire bubble
solution market. Here’s an array with the cost of
each solution you can use to figure it out.

Here’s the array. Notice that it has a cost
for each of the corresponding solutions in the
scores array.

Scores and costs are parallel arrays
because for each score there is a
corresponding cost at the same index.

you are here 4 163

putting some order in your data

This seems a little tricky. How do
we determine not only the scores
that are highest, but then pick the one
with the lowest cost?

Judy: Well, we know the highest score already.

Frank: Right, but how do we use that? And we have these two arrays,
how do we get those to work together?

Judy: I’m pretty sure either of us could write a simple for loop that
goes through the scores array again and picks up the items that
match the highest score.

Frank: Yeah, I could do that. But then what?

Judy: Anytime we hit a score that matches the highest score, we need
to see if its cost is the lowest we’ve seen.

Frank: Oh I see, so we’ll have a variable that keeps track of the index of the “lowest cost
high score.” Wow, that’s a mouthful.

Judy: Exactly. And once we get through the entire array, whatever index is in that variable
is the index of the item that not only matches the highest score, but has the lowest cost.

Frank: What if two items match in cost?

Judy: Hmm, we have to decide how to handle that. I’d say, whatever one we see first is the
winner. Of course we could do something more complex, but let’s stick with that unless
the CEO says differently.

Frank: This is complicated enough I think I want to sketch out some pseudocode before
writing anything.

Judy: I agree; whenever you are managing indices of multiple arrays things can get tricky.
Let’s do that; in the long run I’m sure it will be faster to plan it first.

Frank: Okay, I’ll take a first stab at it…

164 Chapter 4

translating pseudocode to code

function getMostCostEffectiveSolution(scores, costs, highScore) {

}

var mostCostEffective = getMostCostEffectiveSolution(scores, costs, highScore);

console.log("Bubble Solution #" + mostCostEffective + " is the most cost effective");

FUNCTION GetMostCostEffectiveSolution (scores, costs, highScore)

DECLARE a variable cost and set to 100.

DECLARE a variable index.

FOR: var i=0; i < scores.length; i++

 IF the bubble solution at scores[i] has the highest score

 IF the current value of cost is greater than the cost of the bubble solution

 THEN

 SET the value of index to the value of i

 SET the value of cost to the cost of the bubble solution

 END IF

 END IF

END FOR

RETURN index

Translate the
pseudocode to
JavaScript here.

I’m pretty sure I nailed the pseudocode.
Check it out below. Now you go ahead
and translate it into JavaScript. Make sure to

check your answer.

you are here 4 165

putting some order in your data

#11

The last bit of code you wrote really helped determine the TRUE winner; that
is, the solution that produces the most bubbles at the lowest cost. Congrats
on taking a lot of data and crunching it down to something Bubbles-R-Us
can make real business decisions with.

Now, if you're like us, you’re dying to know what is in Bubble Solution #11.
Look no further; the Bubble-R-Us CEO said he’d be delighted to give you the
recipe after all your unpaid work.

So, you’ll find the recipe for Bubble Solution #11 below. Take some time to let
your brain process arrays by making a batch, getting out, and blowing some
bubbles before you begin the next chapter. Oh, but don’t forget the bullet
points and the crossword before you go!

The WINNER: SOLUTION #11

2/3 cup dishwashing soap

1 gallon water

2 to 3 tablespoons of glycerine (available at the

pharmacy or chemical supply house.)

INSTRUCTIONS: Mix ingredients together in a

large bowl and have fun!

Bubble Solution #11

DO try this at HOME!

166 Chapter 4

chapter summary

 � Arrays are a data structure for ordered
data.

 � An array holds a set of items, each with its
own index.

 � Arrays use a zero-based index, where the
first item is at index zero.

 � All arrays have a length property, which
holds a number representing the number
of items in the array.

 � You can access any item using its index.
For example, use myArray[1] to access
item one (the second item in the array).

 � If an item doesn’t exist, trying to access it
will result in a value of undefined.

 � Assigning a value to an existing item will
change its value.

 � Assigning a value to an item that doesn’t
exist in the array will create a new item in
the array.

 � You can use a value of any type for an
array item.

 � Not all the values in an array need to be
the same type.

 � Use the array literal notation to create a
new array.

 � You can create an empty array with
 var myArray = [];

 � The for loop is commonly used to iterate
through arrays.

 � A for loop packages up variable
initialization, a conditional test, and
variable increment into one statement.

 � The while loop is most often used when
you don’t know how many times you
need to loop, and you’re looping until a
condition is met. The for loop is most often
used when you know the number of times
the loop needs to execute.

 � Sparse arrays occur when there are
undefined items in the middle of an array.

 � You can increment a variable by one with
the post-increment operator ++.

 � You can decrement a variable by one with
the post-decrement operator - - .

 � You can add a new value to an array using
push.

you are here 4 167

putting some order in your data

JavaScript cross
Let arrays sink into your brain as you do the crossword.

1 2 3

4

5 6 7

8

9

10 11 12

13

14 15 16

17

Across
5. An array with lundefined values is called a

______ array.
9. To change a value in an array, simply

_______ the item a new value.
10. Who thought he was going to have the

winning bubble solution?
14. When you _______ your code, you organize

it so it's easier to read and maintain.
17. Each value in an array is stored at an

________.

Down
1. To add a new value to the end of an existing

array, use ______.
2. We usually use a ______ loop to iterate over

an array.
3. Arrays are good for storing _________

values.
4. The last index of an array is always one

______ than the length of the array.
6. The operator we use to increment a loop

variable.
7. When iterating through an array, we usually

use the _______ property to know when to
stop.

8. The index of the first item in an array is
________.

11. The value an array item gets if you don't
specify one.

12. Functions can help ________ your code.

ACROSS
5. An array with undefined values is called a ______
array.
9. To change a value in an array, simply _______ the
item a new value.
10. Who thought he was going to have the winning
bubble solution?
14. When you _______ your code, you organize it so it’s
easier to read and maintain.
17. Each value in an array is stored at an ________.

DOWN
1. To add a new value to the end of an existing array, use
______.
2. We usually use a ______ loop to iterate over an array.
3. Arrays are good for storing _________ values.
4. The last index of an array is always one ______ than
the length of the array.
6. The operator we use to increment a loop variable.
7. When iterating through an array, we usually use the
_______ property to know when to stop.
8. The index of the first item in an array is ________.
11. The value an array item gets if you don’t specify one.
12. Functions can help ________ your code.
13. An array is an ________ data structure.
15. How many bubble solutions had the highest score?
16. Access an array item using its ______ in square
brackets.

168 Chapter 4

exercise solutions

We’ve got code for testing to see which ice cream flavors have bubblegum pieces
in them. We had all the code nicely laid out on our fridge using fridge magnets,
but the magnets fell on the floor. It’s your job to put them back together. Be
careful; a few extra magnets got mixed in. Here’s our solution.

var products = ["Choo Choo Chocolate", "Icy Mint", "Cake Batter", "Bubblegum"];

var last = products.length - 1;

var recent = products[last];

The products array below holds the Jenn and Berry’s ice cream flavors. The ice
creams were added to this array in the order of their creation. Finish the code to
determine the most recent ice cream flavor they created. Here’s our solution.

We can use the length of the array, minus
one to get the index of the last item. The
length is 4, and the index of the last item
is 3, because we start from 0.

var products = ["Ch
oo Choo Chocolate",

 "Ic
y Mint", "Cake Batt

er",

 "Bu
bblegum"];

i = i + 1;

var hasBubbleGum = [false,

 false,

 false,

 true];

var i = 0;

i = i + 2;{

}

}

{

console.log(products[i] +
 " contains bubble gum");

Code Magnets Solution

while (i > hasBubbleGum.length)

Rearrange the magnets here.

JavaScript console
Bubblegum contains bubble gum!

Here’s the output
we’re expecting.

while (i < hasBubbleGum.leng
th) {

if (hasBubbleGum[i]
)

Leftover magnets.

you are here 4 169

putting some order in your data

Rewrite your fridge magnet code (from two pages
back) so that it uses a for loop instead of a while
loop. If you need a hint, refer to each piece of the
while loop on the previous page and see how it
maps to the corresponding location in the for loop.
Here’s our solution.

Your code goes here.

var products = ["Ch
oo Choo Chocolate",

 "Ic
y Mint", "Cake Batt

er",

 "Bu
bblegum"];

var hasBubbleGum = [false,

 false,

 false,

 true];

var i = 0;

while (i < hasBubbleGum.leng
th) {

if (hasBubbleGum[i]
) {

console.log(products[i] +
 " contains bubble gum");

}

i = i + 1;

}

var products = ["Choo Choo Chocolate",

 "Icy Mint", "Cake Batter",

 "Bubblegum"];

var hasBubbleGum = [false,

 false,

 false,

 true];

for (var i = 0; i < hasBubbleGum.length; i = i + 1) {

 if (hasBubbleGum[i]) {

 console.log(products[i] + " contains bubble gum");

 }

}

170 Chapter 4

exercise solutions

var scores = [60, 50, 60, 58, 54, 54,

 58, 50, 52, 54, 48, 69,

 34, 55, 51, 52, 44, 51,

 69, 64, 66, 55, 52, 61,

 46, 31, 57, 52, 44, 18,

 41, 53, 55, 61, 51, 44];

var highScore = _____;

var output;

for (var i = 0; i < scores.length; i++) {

 output = "Bubble solution #" + i + " score: " + scores[i];

 console.log(output);

 if (_____________ > highScore) {

 _____________ = scores[i];

 }

}

console.log("Bubbles tests: " + ____________);

console.log("Highest bubble score: " + _____________);

Go ahead and implement the pseudocode on the previous page to find the
highest score by filling in the blanks in the code below. Once you’re done,
give it a try in the browser by updating the code in “bubbles.html”, and
reloading the page. Check the results in the console, and fill in the blanks in
our console display below with the number of bubble tests and the highest
score. Here’s our solution.

JavaScript console
Bubble solution #0 score: 60
Bubble solution #1 score: 50
Bubble solution #2 score: 60
 ...
Bubble solution #34 score: 51
Bubble solution #35 score: 44
Bubbles tests: ________
Highest bubble score: _______

Fill in the blanks to complete the code here...

... and then fill in the blanks showing the
output you get in the console.

0

highScore
scores[i]

scores.length
highScore

36
69

you are here 4 171

putting some order in your data

function getMostCostEffectiveSolution(scores, costs, highScore) {

 var cost = 100;

 var index;

 for (var i = 0; i < scores.length; i++) {

 if (scores[i] == highScore) {

 if (cost > costs[i]) {

 index = i;

 cost = costs[i];

 }

 }

 }

 return index;

}

var mostCostEffective = getMostCostEffectiveSolution(scores, costs, highScore);

console.log("Bubble Solution #" + mostCostEffective + " is the most cost effective");

The final report showing bubble solution #11 as
the winner of the bubble tests for having the
highest bubble factor at a low cost.

Here’s our solution for the getMostCostEffectiveSolution function, which takes an
array of scores, an array of costs, and a high score, and finds the index of the bubble
solution with the highest score and lowest cost. Go ahead and test drive all your code
in “bubbles.html” and make sure you see the same results.

JavaScript console
Bubble solution #0 score: 60
Bubble solution #1 score: 50
Bubble solution #2 score: 60
 ...
Bubble solution #34 score: 51
Bubble solution #35 score: 44
Bubbles tests: 36
Highest bubble score: 69
Solutions with the highest score: 11,18
Bubble Solution #11 is the most cost effective

The getMostCostEffectiveSolution takes the array
of scores, the array of costs, and the high score.

We’ll keep track of the lowest cost solution in cost...
... and the index of the lowest cost solution in index.

We start cost at a high
number, and we’ll lower it each
time we find a lower cost
solution (with a high score).

We iterate through the scores
array like before...

... and check to see if the score has the high score.

If it does, then we can check its cost. If the current cost is greater than the solution’s cost, then we’ve found a lower cost solution, so we’ll make sure we keep track of which solution it is (its index in the array) and store its cost in the cost variable as the lowest cost we’ve seen so far.

Once the loop is complete, the index of solution
with the lowest cost is stored in index, so we return
that to the code that called the function.

And then display the index (which is
the bubble solution #) in the console.

BONUS: We could also implement this using the bestSolutions
array so we wouldn’t have to iterate through all the scores
again. Remember, the bestSolutions array has the indices of the
solutions with the highest scores. So in that code, we’d use the
items in the bestSolutions array to index into the costs array
to compare the costs. The code is a little more efficient than
this version, but it’s also a little bit more difficult to read and
understand! If you’re interested, we’ve included the code in the
book code download at wickedlysmart.com.

172 Chapter 4

exercise solutions

JavaScript cross Solution
Let arrays sink into your brain as you do the crossword.

P
1

F
2

M
3

U O L
4

U
S
5

P A R S E L P
6

L
7

H S T Z
8

O E
A
9

S S I G N E S N
P R T G

B
10

U
11

B B L E O
12

L O G I S T
N E R N H
D O

13
G C

E R
14

E F A C T
15

O R I
16

F D N W E N
I E I O M D
N R Z E E
E E E I

17
N D E X

D D T

Across
5. An array with lundefined values is called a

______ array. [SPARSE]
9. To change a value in an array, simply

_______ the item a new value. [ASSIGN]
10. Who thought he was going to have the

winning bubble solution? [BUBBLEOLOGIST]
14. When you _______ your code, you organize

it so it's easier to read and maintain.
[REFACTOR]

17. Each value in an array is stored at an
________. [INDEX]

Down
1. To add a new value to the end of an existing

array, use ______. [PUSH]
2. We usually use a ______ loop to iterate over

an array. [FOR]
3. Arrays are good for storing _________

values. [MULTIPLE]
4. The last index of an array is always one

______ than the length of the array. [LESS]
6. The operator we use to increment a loop

variable. [POSTINCREMENT]
7. When iterating through an array, we usually

use the _______ property to know when to
stop. [LENGTH]

8. The index of the first item in an array is
________. [ZERO]

11. The value an array item gets if you don't
specify one. [UNDEFINED]

this is a new chapter 173

A trip to Objectville

5 understanding objects

So far you’ve been using primitives and arrays in your
code. And, you’ve approached coding in quite a procedural manner using

simple statements, conditionals and for/while loops with functions—that’s not

exactly object-oriented. In fact, it’s not object-oriented at all! We did use a few

objects here and there without really knowing it, but you haven’t written any of

your own objects yet. Well, the time has come to leave this boring procedural town

behind to create some objects of your own. In this chapter, you’re going to find

out why using objects is going to make your life so much better—well, better in a

programming sense (we can’t really help you with your fashion sense and your

JavaScript skills all in one book). Just a warning: once you’ve discovered objects

you’ll never want to come back. Send us a postcard when you get there.

We’re off to Objectville!
We’re leaving this dusty ol’

procedural town for good. We’ll
send you a postcard!

174 Chapter 5

introducing objects

Did someone say “Objects”?!

Cars have a make,
like “Chevy”.

And a model. In this case we’d
call this car a “Bel Air”.

Some cars are convertibles.
This one isn’t.

Ah, our favorite topic! Objects are going to take your JavaScript
programming skills to the next level—they’re the key to managing
complex code, to understanding the browser’s document model
(which we’ll do in the next chapter), to organizing your data, and
they’re even the fundamental way many JavaScript libraries are
packaged up (more on that much later in the book). That said, objects
are a difficult topic, right? Hah! We’re going to jump in head first
and you’ll be using them in no time.

Here’s the secret to JavaScript objects: they’re just a collection of properties.
Let’s take an example, say, a car. A car’s got properties:

A car has a color.

Cars can hold a
maximum number
of passengers.

A car has the year
it was manufactured,
in this case, 1957.

Cars have a mileage number
that represents how many
miles they've been driven.

Cars don’t just have properties, they do things too.
We’ll talk about the behavior of objects a little bit
later. For now let’s get back to properties...

you are here 4 175

understanding objects

Are there other properties you’d want to have in a car object? Go
ahead and think through all the properties you might come up with
for a car and write them below. Remember, only some real-world
properties are going to be useful in software.

Car Object

make: “Chevy”

model: “Bel Air”

year: 1957

The car has a set of properties.Here’s our Car
represented as a
software object.

Thinking about properties...
Of course there’s a lot more to a real car than just a few properties, but
for the purposes of coding, these are the properties we want to capture in
software. Let’s think about these properties in terms of JavaScript data types:

color: “red”

passengers: 2

convertible: false

mileage: 1021

The make, model and color
properties have string values.

The year, passengers and
mileage are numbers.

And the property
convertible is a boolean.

Each property has a name and a value.

Those fuzzy dice
may look nice, but
would they really b

e

useful in an objec
t?

176 Chapter 5

object properties

,,,,,,,`
We’ve started making a table of property names and values for a car. Can you help
complete it? Make sure you compare your answers with ours before moving on!

{

 __________ : ______________,

 __________ : ______________,

 __________ : ______________,

 __________ : ______________,

 __________ : ______________,

 __________ : ______________,

 __________ : ______________,

 __________ : ______________,

 __________ : ______________

};

model
make “Chevy”

Put your answers here.
Feel free to expand
the list to include
your own properties.

Put your property
names here.

And put the corresponding
values over here.

When you’re done notice the syntax we’ve placed around the properties and values. There might be a pop-quiz at some point... just sayin’.

year
color

passengers
convertible

What if the car is a taxi? What properties and values would it share with your ‘57 Chevy? How
might they differ? What additional properties might it have (or not have)?

mileage

you are here 4 177

understanding objects

var chevy = {

 make: "Chevy",

 model: "Bel Air",

 year: 1957,

 color: "red",

 passengers: 2,

 convertible: false,

 mileage: 1021

};

How to create an object
Here’s the good news: after the last Sharpen your Pencil exercise, you’re
already most of the way to creating an object. All you really need to
do is assign what you wrote on the previous page to a variable (so
you can do things with your object after you’ve created it). Like this:

Next, start an object with a left curly brace.

Each property has a name, a colon and then a value. Here
we have strings, numbers and one boolean as property values.

Add a variable declaration for the object.

We end the object with a closing curly brace, and just like any
other variable declaration, we end this one with a semicolon.

Notice that each property is separated by a comma.

Then all the object’s properties go inside.

You can now take your object, pass it around, get values from it,
change it, add properties to it, or take them away. We’ll get to
how to do all that in a second. For now, let’s create some more
objects to play with…

make: "Chevy"

model: "Bel Air"

year: 1957

color: "red"

passengers: 2

convertible: false
mileage: 1021

chevy

We’ve taken the textual description of
the object above and created a real
live JavaScript object from it.

The result of all this? A brand new object of course. Think of the
object as something that holds all your names and values (in other
words, your properties) together.

Now you’ve got a live object complete with a set of
properties. And you’ve assigned your object to a variable
that you can use to access and change its properties.

178 Chapter 5

exercise specifying object

Its mileage is 12,892.

You don’t have to be stuck with just one object. The real power of objects (as you’ll see soon
enough) is having lots of objects and writing code that can operate on whatever object you give
it. Try your hand at creating another object from scratch… another car object. Go ahead and
work out the code for your second object.

var cadi = {

};

Put the properties
for your Cadillac
object here.

This is a 1955 GM Cadillac.

We’ll call this a tan color.

It’s not a convertible,
and it can hold five
passengers (it’s got a
nice big bucket seat in
the back).

you are here 4 179

understanding objects

Don’t worry, you’re getting off easy this time; rather than issuing a ticket, we ask that

you please review the following “rules of the road” for creating objects.

Make sure you enclose your object in curly braces:

 var cat =
 {

 name
: "fluff

y"

 };

Separate the property name and property value with a colon:

 var plane
t = {

 dia
meter: 4

9528

 };

A property name can be any string, but we usually stick with valid variable names:

 var widge
t = {

 cos
t$: 3.14

,

 "on
 sale":

true

 };

No two properties in an object can have the same name:

 var forec
ast = {

 hig
hTemp: 8

2,

 hig
hTemp: 5

6

 };

Separate each property name and value pair with a comma:

 var gadge
t = {

 name
: "anvil

",

 isHe
avy: tru

e

 };

Don’t use a comma after the last property value:

 var super
hero = {

 name
: "Batma

n",

 alia
s: "Cape

d Crusad
er"

 };

Notice that if y
ou use a string

 with a

space in it for
 a property na

me, you

need to use qu
otes around th

e name.

WRONG! This won’t work.

No comma
needed here!

Webville

 10

180 Chapter 5

what is object oriented

“It helps me design in a more natural way. Things
have a way of evolving.”
 -Joy, 27, software architect

“Not messing around with code I’ve already
tested, just to add a new feature.”
 -Brad, 32, programmer

“I like that the data and the methods that
operate on that data are together in one object.”
 -Josh, 22, beer drinker

“Reusing code in other apps. When I write a new
object, I can make it flexible enough to be used in
something new, later.”
 -Chris, 39, project manager

“I can’t believe Chris just said that. He hasn’t
written a line of code in five years.”
 -Daryl, 44, works for Chris

What do you like about OO?

What is Object-Oriented Anyway?
Up ‘til now, we’ve been thinking of a problem as a set of variable
declarations, conditionals, for/while statements, and function calls. That’s
thinking procedurally: first do this, then do this and so on. With object-oriented
programming we think about a problem in terms of objects. Objects that
have state (like a car might have an oil and a fuel level), and behavior (like a
car can be started, driven, parked and stopped).

What’s the point? Well, object-oriented programming allows you to free your
mind to think at a higher level. It’s the difference between having to toast
your bread from first principles (create a heating coil out of wire, hook it to
electricity, turn the electricity on and then hold your bread close enough to
toast it, not to mention watch long enough for it to toast and then unhook the
heating coil), and just using a toaster (place bread in toaster and push down on
the toast button). The first way is procedural, while the second way is object-
oriented: you have a toaster object that supports an easy method of inserting
bread and toasting it.

Say you were implementing a classic ping-
pong style video arcade game. What would
you choose as objects? What state and
behavior do you think they’d have?

Ball Object
Paddle Object

Player Object
Player Object

Pong!

you are here 4 181

understanding objects

How properties work
So you’ve got all your properties packaged up in an object. Now what? Well, you
can examine the values of those properties, change them, add new properties,
take away properties, and in general, compute using them. Let’s try a few of these
things out, using JavaScript of course.

var fiat = {

 make: "Fiat",

 model: "500",

 year: 1957,

 color: "Medium Blue",

 passengers: 2,

 convertible: false,

 mileage: 88000

};

How to access a property. To access a property in an object, start with
the object name, follow it with a period (otherwise known as a “dot”) and then use
the property name. We often call that “dot” notation and it looks like this:

Use the name of
the object first...

Smallest car in Webville!

fiat.mileage

...then a “dot”... ...then the name of the property.

The “dot” is just a period.

And then we can use a property in any expression, like this:

var miles = fiat.mileage;

if (miles < 2000) {

 buyIt();

}
Start with the variable that holds your
object, add a period (otherwise known
as a dot) and then your property name.

Dot Notation .

 ● Dot notation (.) gives you
access to an object’s
properties.

 ● For example, fiat.color
is a property in fiat with
the name color and the
value “Medium Blue”.

182 Chapter 5

using object properties

make: "Fiat"

model: "500"

year: 1957

color: "Medium Blue"

passengers: 2

convertible: false

mileage: 88000

needsWashing: true

fiat.mileage = 10000;

fiat.needsWashing = true;

Just specify the property you want to change
and then give it a new value. Note: in some
states this may be illegal!

As long as the property doesn’t already
exist in the object, it’s added to the
object. Otherwise, the property with this
name is updated.

How to change a property. You can change the value of a
property at any time. All you need to do is assign the property to a new
value. Like, let’s say we wanted to set the mileage of our nifty Fiat to an
even 10,000. You’d do it like this:

You can extend your object at any time with new properties. To do this you
just specify the new property and give it a value. For instance, let’s say we
want to add a boolean that indicates when the Fiat needs to be washed:

The new property is added to your object.

if (fiat.year < 1965) {

 classic = true;

}

for (var i = 0; i < fiat.passengers; i++) {

 addPersonToCar();

}

How to compute with properties. Computing with
properties is simple: just use a property like you would any variable (or any
value). Here are a few examples:

You can use an object’s property just like you use
a variable, except you need to use dot notation
to access the property in the object.

you are here 4 183

understanding objects

The dog
object.

var dog = {

 name: _________

 _________: 20.2

 age: ________

 ________: "mixed",

 activity: ____________

};

var bark;

if (_____________ > 20) {

 bark = "WOOF WOOF";

} else {

 bark = "woof woof";

}

var speak = __________ + " says " + ________ + " when he wants to " + ____________;

console.log(speak);

 name: "Fido"

 weight: 20.2

age: 4

 breed: "mixed"

 activity: "fetch balls"

Object Magnets

dog.weight

dog.bark

bark

dog.name

dog.activity

"Fido"

Fido

age

breed

"fetch balls"

,

,

,
4

20.2

weight,

Use these magnets to
complete the code.

Fido is hoping you get
all his properties right.

This code got all scrambled up on the fridge. Practice your object creating
and dot notation skills by getting it all back together. Be careful, some
extra magnets might have got mixed in!

184 Chapter 5

deleting properties

I see we can add
new properties at any time.
Can I get rid of them too?

Yes, you can add or delete properties
at any time. As you know, to add a property to
an object you simply assign a value to a new property,
like this:

and from that point on fido will have a new property
dogYears. Easy enough.

To delete a property, we use a special keyword, wait
for it... delete. You use the delete keyword like
this:

When you delete a property, you’re not just deleting
the value of the property, you’re deleting the property
itself. And, if you try to use fido.dogYears after
deleting it, it will evaluate to undefined.

The delete expression returns true if the property
was deleted successfully. delete will return false only
if it can’t delete a property (which could happen for,
say, a protected object that belongs to the browser). It
will return true even if the property you’re trying to
delete doesn’t exist in the object.

fido.dogYears = 35;

delete fido.dogYears;

you are here 4 185

understanding objects

Q: How many properties can an object have?

A: As few or as many as you want. You can have an object
with no properties, or you can have an object with hundreds of
properties. It’s really up to you.

Q: How can I create an object with no properties?

A: Just like you create any object, only leave out all the
properties. Like this:
 var lookMaNoProps = { };

Q: I know I just asked how to create an object with no
properties, but why would I want to do this?

A: Well, you might want to start with an entirely empty object
and then add your own properties dynamically, depending on the
logic of your code. This way of creating an object will become clear
as we continue to use objects.

 var lookMaNoProps = { };

 lookMaNoProps.age = 10;

 if (lookMaNoProps.age > 5) {

 lookMaNoProps.school = "Elementary";

 }

Q: What’s better about an object than just using a bunch
of variables? After all, each of the properties in the fiat object
could just be its own variable, right?

A: Objects package up the complexity of your data so that you
can focus on the high level design of your code, not the nitty gritty
details. Say you want to write a traffic simulator with tens of cars;
you’ll want to focus on cars and streetlights and road objects and
not hundreds of little variables. Objects also make your life easier
because they encapsulate, or hide, the complexity of the state
and behavior of your objects so you don’t have to worry about
them. How all that works will become much clearer as you gain
experience with objects.

Q: If I try to add a new property to my object, and the
object already has a property with that name, what happens?

A: If you try to add a new property, like needsWashing, to fiat
and fiat already has a property needsWashing, then you’ll be
changing the existing value of the property. So if you say:
 fiat.needsWashing = true;
but fiat already contains a property needsWashing with the value
false, then you’re changing the value to true.

Q: What happens if I try to access a property that doesn’t
exist? Like if I said,
 if (fiat.make) { ... }
but fiat didn’t have a property make?

A: The result of the expression fiat.make will be undefined if fiat
doesn’t have a property named make.

Q: What happens if I put a comma after the last property?

A: In most browsers it won’t cause an error. However, in older
versions of some browsers this will cause your JavaScript to halt
execution. So, if you want your code to work in as many browsers
as possible, keep away from extraneous commas.

Q: Can I use console.log to display an object in the
console?

A: You can. Just write:
 console.log(fiat);
in your code, and when you load the page with the console open,
you’ll see information about the object displayed in the console.

JavaScript console

> console.log(fiat)

Object {make: "Fiat", model: "500", year: 1957,
color: "Medium Blue", passengers: 2…}
>

186 Chapter 5

object references

You’ve already seen that a variable is like a container and it
holds a value. But numbers, strings and booleans are pretty small
values. What about objects? Can a variable hold any sized object
no matter how many properties you put in it?

	 Variables don’t actually hold objects.

	 Instead they hold a reference to an object.

	 The reference is like a pointer or an address to the
actual object.

	 In other words, a variable doesn’t hold the object
itself, but it holds something like a pointer. And, in
JavaScript we don’t really know what is inside a
reference variable. We do know that whatever it is, it
points to our object.

 When we use dot notation, the JavaScript
interpreter takes care of using the reference to get
the object and then accesses its properties for us.

So, you can’t stuff an object into a variable, but we often think
of it that way. It’s not what happens though—there aren’t giant
expandable cups that can grow to the size of any object. Instead,
an object variable just holds a reference to the object.

Here’s another way to look at it: a primitive variable represents
the actual value of the variable while an object variable represents
a way to get to the object. In practice you’ll only need to think of
objects as, well, objects, like dogs and cars, not as references, but
knowing variables contain references to objects will come in handy
later (and we’ll see that in just a few pages).

And also think about this: you use the dot notation (.) on a
reference variable to say, “use the reference before the dot to get
me the object that has the property after the dot.” (Read that
sentence a few times and let it sink in.) For example:

 car.color;

means “use the object referenced by the variable car
to access the color property.”

make: "Chevy"

model: "Bel Air"

year: 1957

color: "red"

passengers: 2

convertible: false
mileage: 1021

chevy

Err, excuse
me, but I don’t think

that’s going to fit in here...

Ahh, much
better. I just need to

hold a reference to the
object.

chevy

make: "Chevy"

model: "Bel Air"

year: 1957

color: "red"

passengers: 2

convertible: false
mileage: 1021

Behind
the Scenes

How does a variable hold an object?
Inquiring minds want to know...

you are here 4 187

understanding objects

 var x = 3;

The variable holds the
number three.

3

var myCar = {...};

A reference to the Car object
goes into the variable.

The Car object itself does
not go into the variable!

A number
primitive value.

Reference value
Car obje

ct

myCar

x

Comparing primitives and objects
Think of an object reference as just another variable value, which
means that we can put that reference in a cup, just like we can
primitive values. With primitive values, the value of a variable is…
the value, like 5, -26.7, “hi”, or false. With reference variables, the
value of the variable is a reference: a value that represents a way to
get to a specific object.

Behind
the Scenes

number string boolean reference

3 tru
e

“hello
”

These are all primitive variables.
Each holds the value you stored
in the variable.

This is a reference variable,
and holds a value that is a
reference to an object.

Initializing a primitive variable

Initializing an object (a reference) variable

When you declare and initialize a primitive, you give it a value,
and that value goes right in the cup, like this:

When you declare and initialize an object, you make the object
using object notation, but that object won’t fit in the cup. So what
goes in the cup is a reference to the object.

We don’t know (or care)
how the JavaScript
interpreter represents
object references.

We just know we can
access an object and
its properties using dot
notation.

188 Chapter 5

passing objects to functions

function prequal(car) {

 if (car.mileage > 10000) {

 return false;

 } else if (car.year > 1960) {

 return false;

 }

 return true;

}

You’re going to pass it a car object.

Just use dot notation on the car
parameter to access the mileage and
year properties.

Test each property value against the
prequalification criteria.

If either of the disqualification
tests succeeds we return false.
Otherwise we return true, meaning
we’ve successfully prequalified!

Doing even more with objects...
Let’s say you’re looking for a good car for your stay in Webville. Your criteria?
How about:

 ❏ Built in 1960 or before.

 ❏ 10,000 miles or less.

You also want to put your new coding skills to work (and make your life easier)
so you want to write a function that will “prequalify” cars for you—that is, if the car meets your
criteria then the function returns true; otherwise the car isn’t worth your time and the function
returns false.

More specifically, you’re going to write a function that takes a car object as a parameter and puts that
car through the test, returning a boolean value. Your function is going to work for any car object.

Let’s give it a shot:

var taxi = {
 make: "Webville Motors",
 model: "Taxi",
 year: 1955,
 color: "yellow",
 passengers: 4,
 convertible: false,
 mileage: 281341
};

Now let’s give this function a try. First you need a car object. How about this one:

What do you think? Should we consider this
yellow taxi? Why or why not?

Here’s the function.

you are here 4 189

understanding objects

var taxi = {
 make: "Webville Motors",
 model: "Taxi",
 year: 1955,
 color: "yellow",
 passengers: 4,
 convertible: false,
 mileage: 281341
};

function prequal(car) {

 if (car.mileage > 10000) {

 return false;

 } else if (car.year > 1960) {

 return false;

 }

 return true;

}

var worthALook = prequal(taxi);

if (worthALook) {
 console.log("You gotta check out this " + taxi.make + " " + taxi.model);
} else {
 console.log("You should really pass on the " + taxi.make + " " + taxi.model);
}

JavaScript console

You should really pass on the Webville Motors Taxi
Here's what we got... let's quickly trace
through the code on the next page to see
how the Taxi got rejected...

Doing some pre-qualification

We’ve done enough talking about objects. Let’s actually create one and put it through its
paces using the prequal function. Grab your favorite, basic HTML page (“prequal.html”)
and throw in the code below, load the page and see if the taxi qualifies:

Does the taxi cut it?

190 Chapter 5

how pre-qualification works

Stepping through pre-qualification

First we create the taxi object and assign it to the
variable taxi. Of course, the taxi variable holds
a reference to the taxi object, not the object itself.

Next we call prequal, passing it the argument taxi,
which is bound to the parameter car in the function.

1

2

make: "Webville..."

model: "Taxi

year: 1955

color: "yellow"

passengers: 4

convertible: false
mileage: 281341

function prequal(car) {

 ...

}

We then perform the tests in the body of the function,
using the taxi object in the car parameter.

3

if (car.mileage > 10000) {

 return false;

} else if (car.year > 1960) {

 return false;

}

Unfortunately the taxi has a lot of miles, so the first test of car.mileage > 10000 is
true. The function returns false, and so worthALook is set to false. We then get

“You should really pass on the Webville Motors Taxi” displayed in the console.

4

var worthALook = prequal(taxi);

if (worthALook) {
 console.log("You gotta check out this " + taxi.make + " " + taxi.model);
} else {
 console.log("You should really pass on the " + taxi.make + " " + taxi.model);
}

In this case, the taxi’s mileage is way above
10,000 miles, so prequal returns false.
Too bad; it’s a cool ride.

The prequal function returns
false, and so we get...

JavaScript console

You should really pass on the Webville Motors Taxi

var taxi = { ... };

make: "Webville..."

model: "Taxi

year: 1955

color: "yellow"

passengers: 4

convertible: false
mileage: 281341

make: "Webville..."

model: "Taxi

year: 1955

color: "yellow"

passengers: 4

convertible: false
mileage: 281341

taxi

car points to the same object as taxi!

you are here 4 191

understanding objects

Your turn. Here are three more car objects; what is the result of passing
each car to the prequal function? Work the answer by hand, and then
write the code to check your answers:

var cadi = {
 make: "GM",
 model: "Cadillac",
 year: 1955,
 color: "tan",
 passengers: 5,
 convertible: false,
 mileage: 12892
};

prequal(cadi);

var chevy = {
 make: "Chevy",
 model: "Bel Air",
 year: 1957,
 color: "red",
 passengers: 2,
 convertible: false,
 mileage: 1021
};

prequal(chevy);

var fiat = {
 make: "Fiat",
 model: "500",
 year: 1957,
 color: "Medium Blue",
 passengers: 2,
 convertible: false,
 mileage: 88000
};

prequal(fiat);

Write the
value of
prequal here.

192 Chapter 5

passing object references

Let’s talk a little more about passing
objects to functions
We’ve already talked a bit about how arguments are passed to functions—arguments are
passed by value, which means pass-by-copy. So if we pass an integer, the corresponding function
parameter gets a copy of the value of that integer for its use in the function. The same rules
hold true for objects, however, we should look a little more closely at what pass-by-value
means for objects to understand what happens when you pass an object to a function.

You already know that when an object is assigned to a variable, that variable holds a reference
to the object, not the object itself. Again, think of a reference as a pointer to the object:

So, when you call a function and pass it an object, you’re passing the object
reference, not the object itself. So using our pass by value semantics, a copy of the
reference is passed into the parameter, and that reference remains a pointer to
the original object.

Dog

name: “Fido”

weight: 40

breed: “Mixed”
loves: “walks”

When an object is assigned to
a variable, the variable is given
a reference to the object. It
doesn’t “hold” the object itself.

So, what does this all mean? Well, one of the biggest ramifications is that if you change a
property of the object in a function, you’re changing the property in the original object. So
any changes you make to the object inside a function will still be there when the function
completes. Let’s step through an example...

When we call bark and pass it fido
as an argument, the dog parameter
variable gets a copy of the reference.

fido

dog
function bark(dog) {

 ... code here ...

}

bark(fido);
fido

The dog parameter variable points
to the same object as fido.

copy

you are here 4 193

understanding objects

loseWeight(fido, 10);

fido is a reference to an
object, which means the
object doesn’t live in the fido
variable, but is pointed to by
the fido variable.

Putting Fido on a diet....

Let’s say we are testing a new method of weight loss for dogs, which we
want to neatly implement in a function loseWeight. All you need to
do is pass loseWeight your dog object and an amount to lose, and like
magic, the dog’s weight will be reduced. Here’s how it works:

function loseWeight(dog, amount) {

 dog.weight = dog.weight - amount;

}

alert(fido.name + " now weighs " + fido.weight);

So, when we subtract 10 pounds
from dog.weight, we’re changing
the value of fido.weight.

When we pass fido into loseWeight, what gets
assigned to the dog parameter is a copy of
the reference, not a copy of the object. So
fido and dog point to the same object.

When we pass fido
to a function, we are
passing the reference
to the object.

1 First check out the dog object, fido, which we are
going to pass to the loseWeight function:

2 The dog parameter of the loseWeight function gets
a copy of the reference to fido. So any changes to
the properties of the parameter variable affect
the object that was passed in.

The dog reference
is a copy of the
fido reference.

dog

fido

Dog

name: “Fido”

weight: 48

breed: “Mixed”
loves: “walks”

Here’s the dog object.

194 Chapter 5

object exercise

function getSecret(file, secretPassword) {

 _______.opened = _______.opened + 1;

 if (secretPassword == _______.password) {

 return ______.contents;

 }

 else {

 return "Invalid password! No secret for you.";

 }

}

function setSecret(file, secretPassword, secret) {

 if (secretPassword == _______.password) {

 ______.opened = 0;

 ______.contents = secret;

 }

}

var superSecretFile = {

 level: "classified",

 opened: 0,

 password: 2,

 contents: "Dr. Evel's next meeting is in Detroit."

};

var secret = getSecret(_______________, _____);

console.log(secret);

setSecret(_________________, _____, "Dr. Evel's next meeting is in Philadelphia.");

secret = getSecret(_______________, _____);

console.log(secret);

You’ve been given a super secret file and two functions that allow access to
get and set the contents of the file, but only if you have the right password.
The first function, getSecret, returns the contents of the file if the password
is correct, and logs each attempt to access the file. The second function,
setSecret, updates the contents of the file, and resets the access tracking
to 0. It’s your job to fill in the blanks below to complete the JavaScript and
test your functions.

you are here 4 195

understanding objects

<!doctype html>
<html lang="en">
<head>
 <title>Object-o-matic</title>
 <meta charset="utf-8">
 <script>
 function makeCar() {
 var makes = ["Chevy", "GM", "Fiat", "Webville Motors", "Tucker"];
 var models = ["Cadillac", "500", "Bel-Air", "Taxi", "Torpedo"];
 var years = [1955, 1957, 1948, 1954, 1961];
 var colors = ["red", "blue", "tan", "yellow", "white"];
 var convertible = [true, false];

 var rand1 = Math.floor(Math.random() * makes.length);
 var rand2 = Math.floor(Math.random() * models.length);
 var rand3 = Math.floor(Math.random() * years.length);
 var rand4 = Math.floor(Math.random() * colors.length);
 var rand5 = Math.floor(Math.random() * 5) + 1;
 var rand6 = Math.floor(Math.random() * 2);

 var car = {
 make: makes[rand1],
 model: models[rand2],
 year: years[rand3],
 color: colors[rand4],
 passengers: rand5,
 convertible: convertible[rand6],
 mileage: 0
 };
 return car;
 }

 function displayCar(car) {
 console.log("Your new car is a " + car.year + " " + car.make + " " + car.model);
 }

 var carToSell = makeCar();
 displayCar(carToSell);

 </script>
</head>
<body></body>
</html>

I’m back, and this time
I’ve got an Auto-O-Matic. This
baby will have you hawking new

cars all day long.

The Auto-O-Matic is similar
to the Phrase-O-Matic from
Chapter 4, except that the
words are car properties,
and we're generating a new
car object instead of a
marketing phrase!

Check out what it
does and how it works.

196 Chapter 5

how auto-o-matic works

The Auto-O-Matic
Brought to you by the same guy who brought you the Phrase-O-Matic,
the Auto-O-matic creates knock-off cars all day long. That is, instead of
generating marketing messages, this code generates makes, models, years
and all the properties of a car object. It’s your very own car factory in code. Let’s
take a closer look at how it works.

var makes = ["Chevy", "GM", "Fiat", "Webville Motors", "Tucker"];
var models = ["Cadillac", "500", "Bel-Air", "Taxi", "Torpedo"];
var years = [1955, 1957, 1948, 1954, 1961];
var colors = ["red", "blue", "tan", "yellow", "white"];
var convertible = [true, false];

var rand1 = Math.floor(Math.random() * makes.length);
var rand2 = Math.floor(Math.random() * models.length);
var rand3 = Math.floor(Math.random() * years.length);
var rand4 = Math.floor(Math.random() * colors.length);
var rand5 = Math.floor(Math.random() * 5) + 1;
var rand6 = Math.floor(Math.random() * 2);

1 First, we have a makeCar function that we can call whenever we want to make
a new car. We’ve got four arrays with the makes, models, years and colors of
cars, and an array with true and false options for whether a car is a convertible.
We generate five random numbers so we can pick a make, a model, a year, a
color, and whether a car is a convertible randomly from these five arrays. And we
generate one more random number we’re using for the number of passengers.

We have several makes, models, years and
colors to choose from in these four arrays...

We’re going to combine
values from the arrays
randomly using these
four random numbers.

2 Instead of creating a string by mixing and matching the various car properties, like
we did with Phrase-O-Matic, this time we’re creating a new object, car. This car has
all the properties you’d expect. We pick values for the make, model, year and color
properties from the arrays using the random numbers we created in step 1, and also add
the passengers, convertible and mileage properties:

We’ll use this random number for the
number of passengers. We’re adding 1
to the random number so we can have
at least one passenger in the car.

... and we’ll use this array to choose a convertible
property value, either true or false.

... and we’ll use this random number to choose
whether a car is convertible or not.

you are here 4 197

understanding objects

var car = {
 make: makes[rand1],
 model: models[rand2],
 year: years[rand3],
 color: colors[rand4],
 passengers: rand5,
 convertible: convertible[rand6],
 mileage: 0
};

3 The last statement in makeCar returns the new car object:

Returning an object from a function is just like returning any other value. Let’s
now look at the code that calls makeCar:

var carToSell = makeCar();

Car object

Don’t forget; what you’re
returning (and assigning to
the carToSell variable) is a
reference to a car object.

return car;

We’re creating a new car object, with property
values made from the values in the arrays.

We're also setting the number of passengers to the random number we created, and setting the convertible property to true or false using the convertible array.

Finally, we're just setting the mileage property
to 0 (it is a new car, after all).

function displayCar(car) {
 console.log("Your new car is a " + car.year + " " +
 car.make + " " + car.model);
}
var carToSell = makeCar();
displayCar(carToSell);

First we call the makeCar function and assign the value it returns to
carToSell. We then pass the car object returned from makeCar
to the function displayCar, which simply displays a few of its
properties in the console.

JavaScript console

Your new car is a 1957 Fiat Taxi
Your new car is a 1961 Tucker 500
Your new car is a 1948 GM Torpedo

Here’s your new car! We think a ‘57
Fiat Taxi would be a cool car to have.

4 Go ahead and load up the Auto-O-Matic in your browser (“autoomatic.html”) and
give it a whirl. You’ll find no shortage of new cars to generate, and remember there’s
a sucker born every minute.

Reload the page a
few times like we did!

198 Chapter 5

adding behavior

Oh Behave! Or, how to add behavior to your objects

var fiat = {
 make: "Fiat",
 model: "500",
 year: 1957,
 color: "Medium Blue",
 passengers: 2,
 convertible: false,
 mileage: 88000,
 drive: function() {
 alert("Zoom zoom!");
 }
};

fiat.drive();

You didn’t think objects were just for storing numbers and strings did you? Objects are active.
Objects can do things. Dogs don’t just sit there... they bark, run, and play catch, and a dog
object should too! Likewise, we drive cars, park them, put them in reverse and make them
brake. Given everything you’ve learned in this chapter, you’re all set to add behavior to your
objects. Here’s how we do that:

To call the drive function—excuse us—to call the drive method, you use dot notation again,
this time with the object name fiat and the property name drive, only we follow the
property name with parentheses (just like you would when you call any other function).

We use the dot notation to access
the function in fiat, just like we
would any other property. We say
we're “calling the drive method in
the fiat object”.

You can add a function direc
tly

to an object like this.

And a bit of nomenclature: we typically refer
to functions inside an object as methods.
That is a common object-oriented term for
a function in an object.

Notice we don’t supply a name in the
function definition, we just use the function
keyword followed by the body. The name of
the function is the name of the property.

All you do is assign a function definition to a
property. Yup, properties can be functions too!

The result of calling the
fiat’s drive method.

you are here 4 199

understanding objects

Improving the drive method

var fiat = {
 make: "Fiat",
 model: "500",
 year: 1957,
 color: "Medium Blue",
 passengers: 2,
 convertible: false,
 mileage: 88000,
 started: false,

 start: function() {
 started = true;
 },

 stop: function() {
 started = false;
 },

 drive: function() {
 if (started) {
 alert("Zoom zoom!");
 } else {
 alert("You need to start the engine first.");
 }
 }
};

Let’s make the fiat a little more car-like in behavior. Most cars can’t be driven
until the engine is started, right? How about we model that behavior? We’ll
need the following:

	❏ 	A boolean property to hold the state of the car
(the engine is either on or off).

 ❏ A couple of methods to start and stop the car.

 ❏ A conditional check in the drive method to make
sure the car is started before we drive it.

We’ll begin by adding a boolean started property along with methods to start
and stop the car, then we’ll update the drive method to use the started property.

Here's the property to hold the current
state of the engine (true if it is started
and false if it is off).

And here's a method to start the car.
All it does (for now) is set the started
property to true.

And here's a method to stop the
car. All it does is set the started
property to false.

And here's where the interesting behavior happens: when you try to
drive the car, if it is started we get a “Zoom zoom!" and if not, we
get a warning that we should start the car first.

200 Chapter 5

encapsulating behavior

I thought it was
interesting that rather than just

changing the started property directly,
you wrote a method to do it. Why? Wouldn’t
it be less code to just change the property?

Good catch. You’re right; to start the car we could have
replaced the code:

with:

That would have saved us from writing a method to start the
car.

So why did we create and call the start method instead
of just changing the started property directly? Using
a method to change a property is another example
of encapsulation whereby we can often improve the
maintainability and extensibility of code by letting an object
worry about how it gets things done. It’s better to have a
start method that knows how to start the car than for
you to have to know “to start the car we need to take the
started variable and set it to true.”

Now you may still be saying “What’s the big deal? Why
not just set the property to true to start the car?!” Consider
a more complex start method that checks the seatbelts,
ensures there is enough fuel, checks the battery, checks the
engine temperature and so on, all before setting started to
true. You certainly don’t want to think about all that every
time you start the car. You just want a handy method to
call that gets the job done. By putting all those details into a
method, we’ve created a simple way for you to get an object
to do some work while letting the object worry about how it
gets that work done.

fiat.start();

fiat.started = true;

you are here 4 201

understanding objects

Take the fiat for a test drive

fiat.drive();
fiat.start();
fiat.drive();
fiat.stop();

First, we’ll try to drive the car, which should
give us a message to start the car. Then we’ll
start it for real, and we’ll drive it. Finally,
when we're done we'll stop the car.

Go ahead and load the page in your browser and let the road trip begin!

JavaScript console
ReferenceError: started is not defined

Uh oh, not so fast...

If you can’t drive your fiat, you’re not alone. In fact, find
your way to your JavaScript console and you’re likely to
see an error message similar to the one we got saying that
started is not defined.

So, what’s going on? Let’s listen in on the drive method
and see what’s happening as we try to drive the car with
fiat.drive():

drive: function() {
 if (started) {
 ...
 }
 }

Ahh, I’ve been
invoked! Time to
get to work.

Let’s see now... I see what
looks like a variable started.

I need to figure out where
that is defined...

I always look
first for variables that

are local to my function.
Nope, not there.

Perhaps started
is a parameter of this

function. Nope, not there
either.Hmm, a

global variable maybe?
Nope. Okay, I give up, there
must be a mistake.

Let’s take our new and improved fiat object for a test drive. Let’s give it a good
testing—we’ll try to drive it before it’s started, and then start, drive and stop it. To
do that make sure you have the code for the fiat object typed into a simple HTML
page (“carWithDrive.html”), including the new methods start, stop and drive,
and then add this code below the object:

202 Chapter 5

the this keyword

Here’s the conundrum: we’ve got references to the property started in the
fiat object’s methods, and normally when we’re trying to resolve a variable
in a function, that variable turns out to be a local variable, a parameter of the
function or a global variable. But in the drive method, started is none of
those things; instead, it’s a property of the fiat object.

Shouldn’t this code just work, though? In other words, we wrote started in
the fiat object; shouldn’t JavaScript be smart enough to figure out we mean
the started property?

Nope. As you can see it isn’t. How can that be?

Okay, here’s the deal: what looks like a variable in the method is really a
property of the object, but we aren’t telling JavaScript which object. You
might say to yourself, “Well, obviously we mean THIS object, this one right
here! How could there be any confusion about that?” And, yes, we want the
property of this very object. In fact, there’s a keyword in JavaScript named
this, and that is exactly how you tell JavaScript you mean this object we’re in.

So, let’s add the this keyword and get this code working:

Why doesn’t the drive method know
about the started property?

Really, if you want
me to know which object

started belongs to, you’re
going to have to tell me.

var fiat = {
 make: "Fiat",
 // other properties are here, we're just saving space
 started: false,

 start: function() {
 this.started = true;
 },

 stop: function() {
 this.started = false;
 },

 drive: function() {
 if (this.started) {
 alert("Zoom zoom!");
 } else {
 alert("You need to start the engine first.");
 }
 }
};

Use this along with dot notation
before each occurrence of the
started property to tell the
JavaScript interpreter you mean
the property of THIS very object,
rather than having JavaScript
think you're referring to a variable.

drive: function() {
 if (started) {
 ...
 }
 }

you are here 4 203

understanding objects

Go ahead and update your code, and
take it for a spin! Here’s what we got:

A test drive with “this”

Below, you’ll find JavaScript code with some mistakes in it. Your job is to
play like you’re the browser and find the errors in the code. After you’ve

done the exercise look at the end of the chapter to see if you
found them all.

BE the Browser

var song = {
 name: "Walk This Way",
 artist: "Run-D.M.C.",
 minutes: 4,
 seconds: 3,
 genre: "80s",
 playing: false,

 play: function() {
 if (!playing) {
 this = true;
 console.log("Playing "
 + name + " by " + artist);
 }
 },

 pause: function() {
 if (playing) {
 this.playing = false;
 }
 }
};

this.play();
this.pause();

Go ahead and mark up the code
right here...

204 Chapter 5

understanding this

How this works

make: "Fiat"

model: "500"

... more properties here...

started: false

start: function() {
 this.started = true;
}
stop: function() { ... }
drive: function() {
 ... }

You can think of this like a variable that is assigned to the object
whose method was just called. In other words, if you call the fiat
object’s start method, with fiat.start(), and use this in the
body of the start method, then this will refer to the fiat object.
Let’s look more closely at what happens when we call the start
method of the fiat object.

start: function()
{

 this.star
ted = true;

}

Here’s the fiat object with all
its property names and values,
including the start method.

Whenever we call a method in an object, this will refer to
that object. So here, this refers to the fiat object.

fiat

fiat.start();

First, we have an object representing the Fiat car, which is assigned to
the fiat variable:

Then, when we call the start method, JavaScript takes care of
assigning this to the fiat object.

The real key to understanding this is that whenever a method is called,
in the body of that method you can count on this to be assigned to
the object whose method was called. Just to drive the point home, let’s try it
on a few other objects…

In this case, this refers to the
fiat object, because we called
the fiat object's start method.

this

you are here 4 205

understanding objects

var eightBall = { index: 0,

 advice: ["yes", "no", "maybe", "not a chance"],

 shake: function() {

 this.index = ________.index + 1;

 if (_________.index >= _________.advice.length) {

 _________.index = 0;

 }

 },

 look: function() {

 return _________.advice[_________.index];

 }

};

eightBall.shake();

console.log(eightBall.look());

make: "Chevy"

model: "Bel Air"

... more properties here...

started: false

start: function() {
 this.started = true;
}
stop: function() { ... }
drive: function() {
 ... }

start: function() {
 this.started = true;
}

chevy.start();

If you call the chevy object’s start method, then this will refer to
the chevy object in the body of the method.

And, in the start method of the taxi object, this refers to the taxi.

taxi.start(); start: function() {
 this.started = true;
}

 make: "Webville..."

 model: "Taxi"

 ... more properties here ...

started: false

start: function() {

 this.started = true;

}

 stop: function() { ... }

 drive: function() {...}

Use your new this skills to help us finish this code. Check your answer at the
end of the chapter.

JavaScript console
no

maybe

not a chance

Repeat this sequence several times to
test your code.

206 Chapter 5

questions about functions

If you copy the start, stop, and drive methods into the chevy and cadi objects we
created earlier, what do you have to change to make the methods work correctly?

Answer: Nothing! this refers to “this object,” the one whose method we’re calling.

Q: What’s the difference between a
method and a function?

A: A method is just a function that’s been
assigned to a property name in an object.
You call functions using the function name,
while you call methods using the object dot
notation and the name of the property. You
can also use the keyword this in a method to
refer to the object whose method was called.

Q: I noticed that when using the
function keyword within an object we
don’t give the function an explicit name.
What happened to the function name?

A: Right. To call methods, we use the
property name in the object rather than
explicitly naming the function, and using
that name. For now, just take this as the
convention we use, but later in the book we’ll
dive into the topic of anonymous functions
(which is what you call functions that don’t
explicitly have names).

Q: Can methods have local variables,
like functions can?

A: Yes. A method is a function. We just
call it a method because it lives inside an
object. So, a method can do anything a
function can do precisely because a method
is a function.

Q: So, you can return values from
methods too?

A: Yes. What we said in the last answer!

Q: What about passing arguments to
methods? Can we do that too?

A: Err, maybe you didn’t read the answer
two questions back? Yes!

Q: Can I add a method to an object
after it’s created like I can with a
property?

A: Yes. Think of a method as a function
assigned to a property, so you can add a
new one at any time:
// add a turbo method
car.engageTurbo =
 function() { ... };

Q: If I add a method like engageTurbo
above, will the this keyword still work?

A: Yes. Remember this is assigned to
the object whose method is called at the
time it is called.

Q: When is the value of this set to
the object? When we define the object, or
when we call the method?

A: The value of this is set to the object
when you call the method. So when you call
fiat.start(), this is set to fiat, and when you
call chevy.start(), this is set to chevy. It
looks like this is set when you define the
object, because in fiat.start, this is always
set to fiat, and in chevy.start, this is always
set to chevy. But as you’ll see later, there is
a good reason the value of this is set when
you call the method and not when you define
the object. This is an important point we’ll be
coming back to a few different times.

you are here 4 207

understanding objects

It’s time to get the whole fleet up and running. Add the drive method to each car object. When
you’ve done that, add the code to start, drive and stop each of them. Check your answer at the
end of the chapter.

var chevy = {
 make: "Chevy",
 model: "Bel Air",
 year: 1957,
 color: "red",
 passengers: 2,
 convertible: false,
 mileage: 1021
};

var cadi = {
 make: "GM",
 model: "Cadillac",
 year: 1955,
 color: "tan",
 passengers: 5,
 convertible: false,
 mileage: 12892
};

var taxi = {
 make: "Webville Motors",
 model: "Taxi",
 year: 1955,
 color: "yellow",
 passengers: 4,
 convertible: false,
 mileage: 281341
};

started: false,

start: function() {
 this.started = true;
},

stop: function() {
 this.started = false;
},

drive: function() {
 if (this.started) {
 alert(this.make + " " +
 this.model + " goes zoom zoom!");
 } else {
 alert("You need to start the engine first.");
 }
}

cadi.start();
cadi.drive();
cadi.stop();
chevy.start();
chevy.drive();
chevy.stop();
taxi.start();
taxi.drive();
taxi.stop();

Add the started property and the
methods to each car. Then use the
code below to give them a test drive.

Throw this code
after the car object
definitions to give
them all a test drive.

Don’t forget to add a
comma after mileage when
you add the new properties!

We improved the drive
method just a bit so make
sure you get this new code.

208 Chapter 5

avoiding code duplication

Ah, good eye.

Yes, when we copy start, stop and drive into each
car object we’re definitely duplicating code. Unlike the
other properties, which have values that depend on
which car object they’re in, the methods are the same for
all of the objects.

Now if you’re saying “Great, we’re reusing code!”... not
so fast. Sure, we’re reusing it, but we’re doing that by
copying it, not just once, but many times! What happens
now if we want drive to work differently? Then you’ve
got to redo the code in every single car. Not good. Not
only is that a waste, it can be error prone.

But you’re identifying a problem even larger than simple
copying and pasting; we’re assuming that just because
we put the same properties in all our objects, that makes
them all car objects. What if you accidentally leave out
the mileage property from one of the objects—is it still
a car?

These are all real problems with our code so far, and
we’re going to tackle all these questions in an upcoming
chapter on advanced objects where we’ll talk about some
techniques for properly reusing the code in your objects.

It seems like we’re duplicating code
with all the copying and pasting of the

methods to the various car objects.
Isn’t there a better way?

you are here 4 209

understanding objects

I was also wondering if someone
handed me an object, is there a way to

know what all its properties are?

One thing you can do is iterate through
an object’s properties. To do that you can use a
form of iteration we haven’t seen yet called for in. The
for in iterator steps through every property in an object
in an arbitrary order. Here’s how you could display all
the properties of the chevy object:

for (var prop in chevy) {

 console.log(prop + ": " + chevy[prop]);

}

for in steps through the object's
properties one at time, assigning each
one in turn to the variable prop.

You can use prop as a way to access the
property using bracket notation.

This brings up another topic: there’s another way to
access properties. Did you catch the alternative syntax we just used to
access the properties of the chevy object? As it turns out, you’ve got two options
when accessing a property of an object. You already know dot notation:

chevy.color

But there’s another way: bracket notation, which looks like this:

chevy["color"]

The thing to know about both of these forms, is they are equivalent and do the same thing. The only difference
you need to know about is the bracket notation sometimes allows a little more flexibility because you can make the
property name an expression like this:

We just use the object name followed by a
dot and a property name.

Here we use the object name followed by brackets
that enclose a property name in quotes.

chevy["co" + "lor"]

As long as the expression evaluates to a property
name represented by a string, you can put any
expression you want inside the backets.

JavaScript console

 make: Chevy
 model: Bel Air
 year: 1957
 color: red
 passengers: 2
 convertible: false
 mileage: 1021

Looks a bit like how we
access array items.

210 Chapter 5

behavior and state

var fiat = {

 make: "Fiat",

 model: "500",

 // other properties go here, we're saving some paper...

 started: false,

 fuel: 0,

 start: function() {

 this.started = true;

 },

 stop: function() {

 this.started = false;

 },

 drive: function() {

 if (this.started) {

 alert(this.make + " " + this.model + " goes zoom zoom!");

 } else {

 alert("You need to start the engine first.");

 }

 },

 addFuel: function(amount) {

 this.fuel = this.fuel + amount;

 }

};

How behavior affects state...
Adding some Gas-o-line
Objects contain state and behavior. An object’s properties allow us to keep state about the
object—like its fuel level, its current temperature or, say, the current song that is playing
on the radio. An object’s methods allow us to have behavior—like starting a car, turning
up the heat or fast-forwarding the playback of a song. Have you also noticed these two
interact? Like, we can’t start a car if it doesn’t have fuel, and the amount of fuel should
get reduced as we drive the car. Kinda like real life, right?

Let’s play with this concept a little more by giving our car some fuel, and then we can
start to add interesting behavior. To add fuel, we’ll add a new property, fuel, and a new
method, addFuel. The addFuel method will have a parameter, amount, which we’ll
use to increase the amount of fuel in the fuel property. So, add these properties to the
fiat object:

We’ve added a new property, fuel, to hold
the amount of fuel in the car. The car
will begin life on empty.

Let’s also add a method, addFuel, to add fuel to the
car. We can add as much fuel as we like by specifying
the amount when we call the method.

Remember, fuel is an object property, so we need the this keyword...
But amount is a function parameter,
so we don’t need this to use it.

you are here 4 211

understanding objects

var fiat = {

 // other properties and methods here...

 drive: function() {

 if (this.started) {

 if (this.fuel > 0) {

 alert(this.make + " " +

 this.model + " goes zoom zoom!");

 this.fuel = this.fuel - 1;

 } else {

 alert("Uh oh, out of fuel.");

 this.stop();

 }

 } else {

 alert("You need to start the engine first.");

 }

 },

 addFuel: function(amount) {

 this.fuel = this.fuel + amount;

 }

};

Go ahead and update your code, and take it for a spin!
Here’s what we got with the following test code:

Gas up for a test drive

Now let’s affect the behavior with the state
So now that we have fuel, we can start to implement some interesting behaviors. For
instance, if there’s no fuel, we shouldn’t be able to drive the car! So, let’s start by tweaking
the drive method a bit to check the fuel level to make sure we’ve got some, and then we’ll
subtract one from fuel each time the car is driven. Here’s the code to do that:

Now we can check to make sure there’s
fuel before we drive the car. And, if we
can drive the car, we should reduce the
amount of fuel left each time we drive.

If there’s no fuel left, we display a
message and stop the engine. To drive
the car again, you’ll have to add fuel
and restart the car.

fiat.start();
fiat.drive();
fiat.addFuel(2);
fiat.start();
fiat.drive();
fiat.drive();
fiat.drive();
fiat.stop();

First, we tried to drive it with no
fuel, so then we added some fuel
and drove it until we ran out of
fuel again! Try adding your own
test code and make sure it works
like you think it should.

212 Chapter 5

exercise in integrating fuel

We still have some more work to do to fully integrate the fuel property into the car. For instance,
should you be able to start the car if there’s no fuel? Check out the start method:

It certainly looks like we can.

Help us integrate the fuel property into this code by checking the fuel level before the car is
started. If there’s no fuel, and the start method is called, let the driver know with a handy alert,
like "The car is on empty, fill up before starting!" Rewrite your start method
below, and then add it to your code and test it. Check your answer at the end of the chapter
before you go on.

 start: function() {

 this.started = true;

 }

Take a look at all the fiat car code. Are there other places you could use the
fuel property to alter the car’s behavior (or create behavior to modify the fuel
property)? Jot down your ideas below.

Your code
here.

you are here 4 213

understanding objects

You’ve made it through the first objects chapter and you’re ready to move forward.
Remember how you began with JavaScript? You were thinking of the world in
terms of low-level numbers and strings and statements and conditionals and for
loops and so on. Look how far you’ve come. You’re starting to think at a higher
level, and in terms of objects and methods. Just look at this code:

With objects the future’s
so bright we really DO have

to wear shades...

Congrats on your first objects!

fiat.addFuel(2);
fiat.start();
fiat.drive();
fiat.stop();

It’s so much easier to understand what’s going on in this code, because it describes
the world as a set of objects with state and behavior.

And this is just the beginning. You can take it so much further, and we will. Now
that you know about objects we’re going to keep developing your skills to write
truly object-oriented code using even more features of JavaScript and quite a few
best practices (which become oh-so-important with objects).

There’s one more thing you should know, before you leave this chapter…

214 Chapter 5

even more objects

Console

Math

WindowDocument

Date

You’ve already seen how to use the Math
object to generate random numbers. It
can do a lot more than that!

Use the Date object to
manipulate dates and times.

All these objects are
provided with JavaScript. You’ll find all these objects provided

by your browser. They’re the key to
writing browser-based apps!

You’ve been using the
console object’s log
method to display
messages in the console.

Window provides some key browser-related properties and methods your code can use.

Now that you know a bit about objects, a whole new world is going to open up for you because
JavaScript provides you with lots of objects (for doing math computations, manipulating strings
and creating dates and times, to name a few) that you can use in your own code. JavaScript also
provides some really key objects that you need to write code for the browser (and we’re going to
take a look at one of those objects in the next chapter). For now, take a second to get acquainted
with a few more of these objects, and we’ll touch on these throughout the rest of the book:

Guess what? There are objects all around you!
(and they’ll make your life easier)

We’ll be using the document
object in the next chapter
to write to your web page
from your code.

RegExp JSON

With JSON you can
exchange JavaScript objects
with other applications.This object

lets you find
patterns in
strings.

you are here 4 215

understanding objects

Head First: Welcome Object, it’s been a fascinating chapter.
It’s a real head-spinner thinking about code as objects.

Object: Oh, well… we’ve only just begun.

Head First: How so?

Object: An object is a set of properties, right? Some of those
properties are used to keep the state of the object, and some
are actually functions—or rather, methods—that give an object
behavior.

Head First: I’m with you so far. I hadn’t actually thought
about the methods being properties too, but I guess they are just
another name and value, if you can call a function a value?

Object: Oh you can! Believe me, you can. In fact, that’s a huge
insight, whether you realize it or not. Hold on to that thought;
I’m guessing there’s a lot in store for you on that topic.

Head First: But you were saying…

Object: So, you’ve looked at these objects with their properties
and you’ve created lots of them, like a bunch of different types
of cars.

Head First: Right…

Object: But it was very ad hoc. The real power comes when
you can create a template of sorts, something that can basically
stamp out uniform objects for you.

Head First: Oh, you mean objects that all have the same type?

Object: Sort of… as you’ll see the concept of type is an
interesting one in JavaScript. But you’re on the right track. You’ll
see that you have real power when you can start to write code
that deals with objects of the same kind. Like you could write
code that deals with vehicles and you wouldn’t have to care if
they are bicycles, cars or buses. That’s power.

Head First: It certainly sounds interesting. What else do we
need to know to do that?

Object: Well, you have to understand objects a little better, and
you need a way to create objects of the same kind.

Head First: We just did that, didn’t we? All those cars?

Object: They’re sort of the same kind by convention, because
you happened to write code that creates cars that look alike. In
other words, they have the same properties and methods.

Head First: Right, and in fact we talked a little about how
we are replicating code across all those objects, which is not
necessarily a good thing in terms of maintaining that code.

Object: The next step is to learn how to create objects that
really are all guaranteed to be the same, and that make use of
the same code—code that’s all in one place. That’s getting into
how to design object-oriented code. And you’re pretty much
ready for that now that you know the basics.

Head First: I’m sure our readers are happy to hear that!

Object: But there are a few more things about objects to be
aware of.

Head First: Oh?

Object: There are many objects already out there in the wild
that you can use in your code.

Head First: Oh? I hadn’t noticed, where?

Object: How about console.log. What do you think
console is?

Head First: Based on this discussion, I’m guessing it’s an
object?

Object: BINGO. And log?

Head First: A property… err, a method?

Object: BINGO again. And what about alert?

Head First: I haven’t a clue.

Object: It has to do with an object, but we’ll save that for a bit
later.

Head First: Well, you’ve certainly given us a lot to think about
Object, and I’m hoping you’ll join us again.

Object: I’m sure we can make that work.

Head First: Great! Until next time then.

The Object Exposed
This week’s interview:
In Object’s own words...

216 Chapter 5

In his quest for world domination, Dr. Evel has accidentally exposed an internal web page with the
current passcode to his operation. With the passcode we can finally get the upper hand. Of course,
as soon as Dr. Evel discovered the page was live on the Internet, he quickly took it down. Luckily, our
agents made a record of the page. The only problem is, our agents don’t know HTML or JavaScript.
Can you help figure out the access code using the code below? Keep in mind, if you are wrong, it
could be quite costly to Queen and Country.

Crack the Code Challenge

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Dr. Evel's Secret Code Page</title>
 </head>
 <body>
 <p id="code1">The eagle is in the</p>
 <p id="code2">The fox is in the</p>
 <p id="code3">snuck into the garden last night.</p>
 <p id="code4">They said it would rain</p>
 <p id="code5">Does the red robin crow at</p>
 <p id="code6">Where can I find Mr.</p>
 <p id="code7">I told the boys to bring tea and</p>
 <p id="code8">Where's my dough? The cake won't</p>
 <p id="code9">My watch stopped at</p>
 <p id="code10">barking, can't fly without umbrella.</p>
 <p id="code11">The green canary flies at</p>
 <p id="code12">The oyster owns a fine</p>
 <script src="code.js"></script>
 </body>
</html>

Here’s the JavaScript.

To
p

 S
ec

r
et

var acce
ss =

 docume
nt.getEl

ementByI
d("code9

");

var code
 = acces

s.innerH
TML;

code = c
ode + "

midnight
";

alert(co
de);

What pass code will
you see in the alert?

Write your answer in the alert dialog box below.

Here’s the HTML.

The above JavaScript code is being included here.

Looks like this code is using
a document object.

you are here 4 217

understanding objects

 � An object is a collection of properties.

 � To access a property, use dot notation: the
name of the variable containing the object,
then a period, then the name of the property.

 � You can add new properties to an object
at any time, by assigning a value to a new
property name.

 � You can also delete properties from objects,
using the delete operator.

 � Unlike variables that contain primitive
values, like strings, numbers, and booleans,
a variable can’t actually contain an object.
Instead, it contains a reference to an object.
We say that objects are “reference variables”.

 � When you pass an object to a function, the
function gets a copy of the reference to the
object, not a copy of the object itself. So, if
you change the value of one of the object’s
properties, it changes the value in the original
object.

 � Object properties can contain functions.
When a function is in an object, we call it a
method.

 � You call a method by using the dot
notation: the object name, a period, and the
property name of the method, followed by
parentheses.

 � A method is just like a function except that it
is in an object.

 � You can pass arguments to methods, just like
you can to regular functions.

 � When you call an object’s method, the
keyword this refers to the object whose
method you are calling.

 � To access an object’s properties in an
object’s method, you must use dot notation,
with this in place of the object’s name.

 � In object-oriented programming, we think in
terms of objects rather than procedures.

 � An object has both state and behavior. State
can affect behavior, and behavior can affect
state.

 � Objects encapsulate, or hide, the complexity
of the state and behavior in that object.

 � A well-designed object has methods that
abstract the details of how to get work done
with the object, so you don’t have to worry
about it.

 � Along with the objects you create, JavaScript
has many built-in objects that you can use.
We’ll be using many of these built-in objects
throughout the rest of the book.

If you skipped the last page, go back and do the
challenge. It is vitally important to Chapter Six!<!doctype html>

<html>
 <head>
 <meta charset="utf-8">

 <title>Dr. Evel's Secret
Code Page</title>

 </head>
 <body>
 <p id="code1">The eagle i

s in the</p>

 <p id="code2">The fox is
in the</p>

 <p id="code3">snuck into
the garden last night.</p>

 <p id="code4">They said i
t would rain</p>

 <p id="code5">Does the re
d robin crow at</p>

 <p id="code6">Where can I
 find Mr.</p>

 <p id="code7">I told the
boys to bring tea and</p>

 <p id="code8">Where's my
dough? The cake won't</p>

 <p id="code9">My watch st
opped at</p>

 <p id="code10">barking, c
an't fly without umbrella.</p

>

 <p id="code11">The green
canary flies at</p>

 <p id="code12">The oyster
 owns a fine</p>

 <script src="code.js"></s
cript>

 </body>
</html>

Here’s the JavaScript.

To
p

 S
ec

r
et

var acc
ess =

 docum
ent.get

Element
ById("c

ode9");

var cod
e = acc

ess.inn
erHTML;

code =
code +

" midni
ght";

alert(c
ode);

What pass code
will you see in
the alert?

Write your answer
in the alert dialog
box below.

Here’s the HTML.

The above JavaScript
code is being
included here.

Looks like this code is using
a document object.

218 Chapter 5

javascript crossword

JavaScript cross
How about a crossword object? It’s got lots of clue
properties that will help objects stick in your brain.

1

2 3 4 5

6

7

8

9

10 11 12

13

14

Across
2. An object gets ________ with its methods.
6. The method log is a property in the

_________ object.
8. this is a _______, not a regular variable.

10. To access the property of an object we use
the ____ notation.

11. _______ can have local variables and
parameters, just like regular functions can.

13. We used a ______ property to represent
the make of a car object.

14. The ______ method affects the state of
the car object, by adding to the amount of
fuel in the car.

Down
1. The fiat wouldn’t start because we weren’t

using ______ to access the started
property.

3. Object references are passed by ______ to
functions, just like primitive variables.

4. When you assign an object to a variable, the
variable contains a _______ to the object.

5. We usually use one _______ for property
names.

7. The name and value of a property in an
object are separated by a _____.

9. Don’t forget to use a _____ after each
property value except the last one.

12. Car and dog objects can have both _____
and behavior.

ACROSS
2. An object gets ________ with its methods.
6. The method log is a property in the _________ object.
8. this is a _______, not a regular variable.
10. To access the property of an object we use ____
notation.
11. _______ can have local variables and parameters,
just like regular functions can.
13. We used a ______ property to represent the make of
a car object.
14. The ______ method affects the state of the car object,
by adding to the amount of fuel in the car.

DOWN
1. The fiat wouldn’t start because we weren’t using
______ to access the started property.
3. Object references are passed by ______ to functions,
just like primitive variables.
4. When you assign an object to a variable, the variable
contains a _______ to the object.
5. We usually use one _______ for property names.
7. The name and value of a property in an object are
separated by a _____.
9. Don’t forget to use a _____ after each property value
except the last one.
12. Car and dog objects can have both _____ and
behavior.

you are here 4 219

understanding objects

,,,,,,,`
We’ve started making a table of property names and values for a car. Can you
help complete it? Here’s our solution:

{

 __________ : ______________,

 __________ : ______________,

 __________ : ______________,

 __________ : ______________,

 __________ : ______________,

 __________ : ______________,

 __________ : ______________,

 __________ : ______________,

 __________ : ______________

};

model
make “Chevy”

Put your answers here.
Feel free to expand
the list to include
your own properties.

Put your property
names here.

And put the corresponding
values over here.

year
color

passengers
convertible
mileage

“Bel Air”
1957

false

We’re using strings,
booleans and numbers
where appropriate.

“red”

accessories “Fuzzy Dice”
whitewalls true

2

1021

var eightBall = { index: 0,

 advice: ["yes", "no", "maybe", "not a chance"],

 shake: function() {

 this.index = this.index + 1;

 if (this.index >= this.advice.length) {

 this.index = 0;

 }

 },

 look: function() {

 return this.advice[this.index];

 }

};

eightBall.shake();

console.log(eightBall.look());

Use your new this skills to help us finish this code. Here’s our solution.

JavaScript console
no

maybe

not a chance

Repeat this sequence several times to
test your code.

220 Chapter 5

exercise solution

Its mileage is 12,892.

You don’t have to be stuck with just one object. The real power of objects (as you’ll see soon
enough) is having lots of objects and writing code that can operate on whatever object you give
it. Try your hand at creating another object from scratch… another car object. Go ahead and
work out the code for your second object. Here’s our solution.

var cadi = {

 make: "GM",

 model: "Cadillac",

 year: 1955,

 color: "tan",

 passengers: 5,

 convertible: false,

 mileage: 12892

};

Here are the
properties for the
Cadillac.

This is a 1955 GM Cadillac.

We’ll call this a tan color.

It’s not a convertible,
and it can hold five
passengers (It’s got a
nice big bucket seat in
the back).

you are here 4 221

understanding objects

The dog
object.

var dog = {

 name: _________

 _________: 20.2

 age: ________

 ________: "mixed",

 activity: ____________

};

var bark;

if (_____________ > 20) {

 bark = "WOOF WOOF";

} else {

 bark = "woof woof";

}

var speak = __________ + " says " + ________ + " when he wants to " + ______________;

console.log(speak);

 name: "Fido"

 weight: 20.2

age: 4

 breed: "mixed"

 activity: "fetch balls"

Object Magnets Solution
Practice your object creating and dot notation skills by completing
the code below with the fridge magnets. Be careful, some extra
magnets got mixed in! Here's our solution.

dog.weight

bark

bark

dog.name dog.activity

Fido

age

breed

"fetch balls"

,

,

,

4

20.2

weight

,

Leftover magnets

Fido is hoping you get
all his properties right.

"Fido"

222 Chapter 5

exercise solution

Your turn. Here are three more car objects; what is the result of passing
each car to the prequal function? Work the answer by hand, and then
write the code to check your answers. Here’s our solution:

var cadi = {
 make: "GM",
 model: "Cadillac",
 year: 1955,
 color: "tan",
 passengers: 5,
 convertible: false,
 mileage: 12892
};

prequal(cadi);

var chevy = {
 make: "Chevy",
 model: "Bel Air",
 year: 1957,
 color: "red",
 passengers: 2,
 convertible: false,
 mileage: 1021
};

prequal(chevy);

var fiat = {
 make: "Fiat",
 model: "500",
 year: 1957,
 color: "Medium Blue",
 passengers: 2,
 convertible: false,
 mileage: 88000
};

prequal(fiat);

Write the
value of
prequal here.

false false

true

you are here 4 223

understanding objects

function getSecret(file, secretPassword) {

 _______.opened = _______.opened + 1;

 if (secretPassword == _______.password) {

 return ______.contents;

 }

 else {

 return "Invalid password! No secret for you.";

 }

}

function setSecret(file, secretPassword, secret) {

 if (secretPassword == _______.password) {

 ______.opened = 0;

 ______.contents = secret;

 }

}

var superSecretFile = {

 level: "classified",

 opened: 0,

 password: 2,

 contents: "Dr. Evel's next meeting is in Detroit."

};

var secret = getSecret(_______________, _____);

console.log(secret);

setSecret(_________________, _____, "Dr. Evel's next meeting is in Philadelphia.");

secret = getSecret(_______________, _____);

console.log(secret);

file file
file

file

file
file
file

superSecretFile 2

superSecretFile 2
2superSecretFile

The superSecretFile object is passed into
the getSecret function, and gets the
parameter name file. So we need to make
sure we use the object name, file and dot
notation to access the object's properties,
like opened, and password.

Same here.

We can pass the supserSecretFile
object to the getSecret and
setSecret functions.

You’ve been given a super secret file and two functions that allow access to get and
set the contents of the file, but only if you have the right password. The first function,
getSecret, returns the contents of the file if the password is correct, and logs each
attempt to access the file. The second function, setSecret, updates the contents of
the file, and resets the access tracking back to 0. It’s your job to fill in the blanks below
to complete the JavaScript, and test your functions. Here’s our solution.

224 Chapter 5

exercise solution

var song = {

 name: "Walk This Way",

 artist: "Run-D.M.C.",

 minutes: 4,

 seconds: 3,

 genre: "80s",

 playing: false,

 play: function() {

 if (!this.playing) {

 this.playing = true;

 console.log("Playing "

 + this.name + " by " + this.artist);

 }

 },

 pause: function() {

 if (this.playing) {

 this.playing = false;

 }

 }

};

this song.play();

this song.pause();

Below, you’ll find JavaScript code
with some mistakes in it. Your job

is to play like you’re the
browser and find the
errors in the code. Here’s
our solution.

BE the Browser Solution

We were missing a this here.

And missing the playing
property name here.

We need to use this to access
both these properties, too.

Again here, we need this to access the playing property.

We don't use this outside of a method; we call
an object using the object’s variable name.

you are here 4 225

understanding objects

It’s time to get the whole fleet up and running. Add the drive method to each car object. When
you’ve done that, add the code to start, drive and stop each of them. Here’s our solution.

var cadi = {
 make: "GM",
 model: "Cadillac",
 year: 1955,
 color: "tan",
 passengers: 5,
 convertible: false,
 mileage: 12892,
 started: false,
 start: function() {
 this.started = true;
 },
 stop: function() {
 this.started = false;
 },
 drive: function() {
 if (this.started) {
 alert(this.make + " " +
 this.model + " goes zoom zoom!");
 } else {
 alert("You need to start the engine first.");
 }
 }
};
var chevy = {
 make: "Chevy",
 model: "Bel Air",
 year: 1957,
 color: "red",
 passengers: 2,
 convertible: false,
 mileage: 1021,
 started: false,
 start: function() {
 this.started = true;
 },
 stop: function() {
 this.started = false;
 },
 drive: function() {
 if (this.started) {
 alert(this.make + " " +
 this.model + " goes zoom zoom!");
 } else {
 alert("You need to start the engine first.");
 }
 }
};

var taxi = {
 make: "Webville Motors",
 model: "Taxi",
 year: 1955,
 color: "yellow",
 passengers: 4,
 convertible: false,
 mileage: 281341,
 started: false,
 start: function() {
 this.started = true;
 },
 stop: function() {
 this.started = false;
 },
 drive: function() {
 if (this.started) {
 alert(this.make + " " +
 this.model + " goes zoom zoom!");
 } else {
 alert("You need to start the engine first.");
 }
 }
};

cadi.start();
cadi.drive();
cadi.stop();

chevy.start();
chevy.drive();
chevy.stop();

taxi.start();
taxi.drive();
taxi.stop();

Make sure you add a
comma after any new
properties you add.

We copied and pasted the
code into each object, so
every car has the same
properties and methods.
Now we can start, drive
and stop each of the
cars, using the same
method names.

226 Chapter 5

exercise solution

var fiat = {
 make: "Fiat",
 model: "500",
 year: 1957,
 color: "Medium Blue",
 passengers: 2,
 convertible: false,
 mileage: 88000,
 fuel: 0,
 started: false,

 start: function() {
 if (this.fuel == 0) {
 alert("The car is on empty, fill up before starting!");
 } else {
 this.started = true;
 }
 },

 stop: function() {
 this.started = false;
 },
 drive: function() {
 if (this.started) {
 if (this.fuel > 0) {
 alert(this.make + " " +
 this.model + " goes zoom zoom!");
 this.fuel = this.fuel - 1;
 } else {
 alert("Uh oh, out of fuel.");
 this.stop();
 }
 } else {
 alert("You need to start the engine first.");
 }
 },
 addFuel: function(amount) {
 this.fuel = this.fuel + amount;
 }
};

We still have some more work to do to fully integrate the fuel property into the car. For instance,
should you really be able to start the car if there’s no fuel? Help us integrate the fuel property
into this code by checking the fuel level before the car is started. If there’s no fuel, and the start
method is called, let the driver know with a handy alert, like "The car is on empty, fill
up before starting!" Rewrite the start method below, and then add it to your code and
test it. Check your answer at the end of the chapter before you go on. Here’s our solution.

you are here 4 227

understanding objects

JavaScript cross Solution
How about a crossword object? It’s got lots of clue
properties that will help objects stick in your brain.

T
1

H
B
2

E H A V
3

I O R
4

W
5

I
A E C

6
O N S O L E

L F C
7

R
U K

8
E Y W O R D

C
9

E R L
D
10

O T M
11

E T H O D S
12

M N N T
M C M

13
A K E

A
14

D D F U E L T
E

Across
2. An object gets ________ with its methods.

[BEHAVIOR]
6. The method log is a property in the

_________ object. [CONSOLE]
8. this is a _______, not a regular variable.

[KEYWORD]
10. To access the property of an object we use

the ____ notation. [DOT]
11. _______ can have local variables and

parameters, just like regular functions can.
[METHODS]

13. We used a ______ property to represent
the make of a car object. [MAKE]

14. The ______ method affects the state of
the car object, by adding to the amount of
fuel in the car. [ADDFUEL]

Down
1. The fiat wouldn’t start because we weren’t

using ______ to access the started
property. [THIS]

3. Object references are passed by ______ to
functions, just like primitive variables.
[VALUE]

4. When you assign an object to a variable, the
variable contains a _______ to the object.
[REFERENCE]

5. We usually use one _______ for property
names. [WORD]

7. The name and value of a property in an
object are separated by a _____. [COLON]

9. Don’t forget to use a _____ after each
property value except the last one.
[COMMA]

12. Car and dog objects can have both _____
and behavior. [STATE]

this is a new chapter 229

6 interacting with your web page

Getting to know the DOM

You’ve come a long way with JavaScript. In fact you’ve evolved

from a newbie to a scripter to, well, a programmer. But, there's something

missing. To really begin leveraging your JavaScript skills you need to know how

to interact with the web page your code lives in. Only by doing that are you going

to be able to write pages that are dynamic, pages that react, that respond, that

update themselves after they’ve been loaded. So how do you interact with the

page? By using the DOM, otherwise known as the document object model. In

this chapter we’re going to break down the DOM and see just how we can use it,

along with JavaScript, to teach your page a few new tricks.

Hold on there cowboy.
If you wanna get to know

me, then you need to know
your way around my document

object model...

230 Chapter 6

reviewing the crack the code challenge

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Dr. Evel's Secret Code Page</title>
 </head>
 <body>
 <p id="code1">The eagle is in the</p>
 <p id="code2">The fox is in the</p>
 <p id="code3">snuck into the garden last night.</p>
 <p id="code4">They said it would rain</p>
 <p id="code5">Does the red robin crow at</p>
 <p id="code6">Where can I find Mr.</p>
 <p id="code7">I told the boys to bring tea and</p>
 <p id="code8">Where's my dough? The cake won't</p>
 <p id="code9">My watch stopped at</p>
 <p id="code10">barking, can't fly without umbrella.</p>
 <p id="code11">The green canary flies at</p>
 <p id="code12">The oyster owns a fine</p>
 <script src="code.js"></script>
 </body>
</html>

You were given some HTML with code in an external file, captured from
Dr. Evel’s web site, that looked like this:

In our last chapter, we left you with a little
challenge. The “crack the code challenge.”

Here’s the
JavaScript....

var access =

 document.getElementById("code9");

var code = access.innerHTML;

code = code + " midnight";

alert(code);

And you needed to figure out Dr. Evel’s passcode using your deductive
powers on this code.

Notice that each paragraph
is identified by an id.

Here’s the HTML.

document is a global object.

And getElementById is a method.
And look, we have
dot notation,
this looks like
an object with
an innerHTML
property.

Make sure you get the case right
on the letters in the method name
getElementById, otherwise it
won’t work!

you are here 4 231

interacting with your web page

So what does the code do?

var access =

 document.getElementById("code9");

var code = access.innerHTML;

code = code + " midnight";

alert(code);

Next we take that element (that is, the element with the id “code9”) and
we use its innerHTML property to get its content, which we assign to
the variable code.

Let’s walk through this code to see how Dr Evel is generating his passcodes. After we break
down each step you’ll start to see how this all works:

Dr. Evel’s code adds the string “ midnight” to the end of string contained
in code, which is “My watch stopped at”. Then, the page creates an alert
with the passcode contained in the variable code.

<p id="code9">My watch stopped at</p>

Get the element that has
an id of “code9”. That
would be this element...

var access =

 document.getElementById("code9");

var code = access.innerHTML;

code = code + " midnight";

alert(code);

The element with id “code9” is a
paragraph element and that element’s
content (or rather its “innerHTML”) is
the text “My watch stopped at”.

var access =

 document.getElementById("code9");

var code = access.innerHTML;

code = code + " midnight";

alert(code);

So we add “ midnight” to “My watch
stopped at” to get “My watch stopped
at midnight” and then put up an alert
to display this code.

1

2

First, the code sets the variable access to the result of calling the document object’s
getElementById method and passing it “code9”. What gets returned is an element object.

3

We'll learn all about
document and element
objects in this chapter.

232 Chapter 6

how the crack the code challenge works

So, what did we just do? Well, we had some JavaScript that reached into the
page (otherwise known as the document), grabbed an element (the one with
the id equal to "code9"), took that element’s content (which is "My watch
stopped at"), slapped a " midnight" on the end, and then displayed the
result as a passcode.

A quick recap

The eagle is in
the

The fox is in th
e

snuck into the g
arden last night

.

They said it wou
ld rain

Does the red rob
in crow at

Where can I find
 Mr.

I told the boys
to bring tea and

Where's my dough
? The cake won't

My watch stopped
 at

barking, can't f
ly without umbre

lla.

The green canary
 flies at

The oyster owns
a fine

Dr. Evel’s page contains all the possible
passcodes, each in a paragraph element
labeled with an HTML id.

1

Behind the scenes JavaScript grabs
the element with the id="code9"

2

And takes the content of that
element, adds " midnight" to it,
and displays an alert.

3

"My watch stopped at" + " midnight"

The Browser

<p id="code9">My watch stopped at</p>

Now, more power to Dr. Evel and his JavaScript skills, and we wish him the best
in his security schemes, but what is important here is to notice that the web page
is a living, breathing data structure that your JavaScript can interact with—you can
access and read the content of the elements in your page. You can also go the
other way, and use JavaScript to change the content or structure of your page.
To do all that, let’s step back for a moment and understand better how JavaScript
and HTML work together.

you are here 4 233

interacting with your web page

How JavaScript really interacts with your page
JavaScript and HTML are two different things. HTML is markup and JavaScript is code.
So how do they interact? It all happens through a representation of your page, called
the document object model, or the DOM for short. Where does the DOM come from? It’s
created when the browser loads your page. Here’s how:

We call this the
Document Object Model...

html

head

title script

body

h1 ph2

em

Your browser

When you load a page into the
browser, not only does the browser
parse the HTML and then render it
to the display, it also creates a set of
objects that represent your markup.
These objects are stored in the DOM.

Your JavaScript can interact with the
DOM to get access to the elements
and the content in them. JavaScript
can also use the DOM to create or
remove elements.

...or DOM, for short.

1

2
When JavaScript
modifies the DOM, the
browser updates the
page dynamically, so
you see new content on
your page.

3

234 Chapter 6

making a dom

Ingredients

One well-formed HTML5 page

One modern web browser, pre-heated and
ready to go

Instructions

1. Start by creating a document node at the top.

2. Next, take the top level element of your HTML
page, in our case the <html> element, call it
the current element and add it as a child of the
document.

3. For each element nested in the current element,
add that element as a child of the current
element in the DOM.

4. Return to (3) for each element you just added,
and repeat until you are out of elements.

How to bake your very own DOM
Let’s take some markup and create a DOM for it. Here’s a simple
recipe for doing that:

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>My blog</title>
 <script src="blog.js"></script></head>
<body>
 <h1>My blog</h1>
 <div id="entry1">
 <h2>Great day bird watching</h2> <p>
 Today I saw three ducks!
 I named them
 Huey, Louie, and Dewey.
 </p>
 <p>
 I took a couple of photos... </p>
 </div>
</body>
</html>

document

document

html

document

head body

html

We’ve already fully

baked this DOM for you.

See the finished DOM on

the next page.

you are here 4 235

interacting with your web page

document is always at the top.

document is a special part of

the tree that you can use
 in

JavaScript to get access to
 the

entire DOM. These are like the
branches of the tree.

These are like the leaves
of the tree (because there
are no elements inside them,
just text).

document

head

title script

body

h1meta div id=”entry1”

h2 p p

document is also like the root
of an upside down tree.

My blog

Great
day bird
watching

Today
I saw
three...

I took a
couple of
photos...

The DOM includes the content of the page as well as the
elements. (We don’t always show all the text content when
we draw the DOM, but it’s there).

My blog

html

A first taste of the DOM
If you follow the recipe for creating a DOM you’ll end up with a structure like
the one below. Every DOM has a document object at the top and then a tree
complete with branches and leaf nodes for each element in the HTML markup.
Let’s take a closer look.

Now that we have a
DOM we can examine or
alter it in any way we want.

We compare this structure to a
tree because a “tree” is a data
structure that comes from
computer science, and because
it looks like an upside down
tree, with the root at the top
and the leaves at the bottom.

236 Chapter 6

exercise for making a dom

<!doctype html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>Movies</title>

 </head>

 <body>

 <h1>Movie Showtimes</h1>

 <h2 id="movie1">Plan 9 from Outer Space</h2>

 <p>Playing at 3:00pm, 7:00pm.

 Special showing tonight at midnight!

 </p>

 <h2 id="movie2">Forbidden Planet</h2>

 <p>Playing at 5:00pm, 9:00pm.</p>

 </body>

</html>

Your job is to act like
you’re the browser. You
need to parse the HTML
and build your very own
DOM from it. Go ahead
and parse the HTML to
the right, and draw your
DOM below. We’ve already
started it for you.

BE the Browser

Draw your DOM here.document

html

Check your answer with
our solution at the end
of the chapter before
you go on.

you are here 4 237

interacting with your web page

Or, how two totally different technologies hooked up.

HTML and JavaScript are from different planets for sure.
The proof? HTML’s DNA is made of declarative markup
that allows you to describe a set of nested elements that
make up your pages. JavaScript, on the other hand, is
made of pure algorithmic genetic material, meant for
describing computations.

Are they so far apart they can’t even communicate? Of
course not, because they have something in common: the
DOM. Through the DOM, JavaScript can communicate
with your page, and vice versa. There are a few ways to
make this happen, but for now let’s concentrate on one—
it’s a little wormhole of sorts that allows JavaScript to get
access to any element in your page. That wormhole is
getElementById.

238 Chapter 6

using getelementbyid to get an element

Let’s start with a DOM. Here’s a simple DOM; it’s got a few HTML paragraphs, each with
an id identifying it as the green, red or blue planet. Each paragraph has some text as well. Of
course there’s a <head> element too, but we’ve left the details out to keep things simpler.

Now let’s use JavaScript to make things more interesting. Let’s say we want to change
the greenplanet’s text from “All is well” to “Red Alert: hit by phaser fire!” Down the road you
might want to do something like this based on a user’s actions, or even based on data from a
web service. We’ll get to all that; for now let’s just get the greenplanet’s text updated. To do that
we need the element with the id “greenplanet”. Here’s some code that does that:

document.getElementById("greenplanet");

Here we’re asking the document to
get us an element by finding the
element that matches the given id.

The document represents the
entire page in your browser and
contains the complete DOM, so
we can ask it to do things like
find an element with a specific id.

p

getElementById(“greenplanet”) returns
the paragraph element corresponding
to “greenplanet”...

...and then the
JavaScript code
can do all sorts
of interesting
things with it.

body

p id =”greenplanet” p id =”redplanet” p id =”blueplanet”

All is
well

Nothing to
report

All systems
A-OK

head

html

document

you are here 4 239

interacting with your web page

Once getElementById gives you an element, you’re ready do something with it
(like change its text to “Red Alert: hit by phaser fire!”). To do that, we typically assign the
element to a variable so we can refer to the element thoughout our code. Let’s do that
and then change the text:

var planet = document.getElementById("greenplanet");

planet.innerHTML = "Red Alert: hit by phaser fire!";

Here’s our call to getElementById,
which seeks out the “greenplanet”
element and returns it.

We’re assigning the element to a
variable named planet.

And in our code we can now just
use the variable planet to refer
to our element.

We change the content of the greenplanet
element to our new text... which results in
the DOM (and your page) being updated
with the new text.

Red Alert: hit by
phaser fire!

body

p id =”greenplanet” p id =”redplanet” p id =”blueplanet”

Nothing to
report

All systems
A-OK

head

html

document

We can use the
innerHTML property of our planet element to change the content of the element.

We’ll talk more about
properties of elements
shortly...

Any changes to the DOM are reflected in the
browser’s rendering of the page, so you’ll see the
paragraph change to contain the new content!

240 Chapter 6

how getelementbyid works

So, what did we just do? Let’s step through it in a little more detail. We’re using the
document object to get access to the DOM from our code. The document object
is a built-in object that comes with a bunch of properties and methods, including
getElementById, which we can use to grab an element from the DOM. The
getElementById method takes an id and returns the element that has that id.
Now in the past you’ve probably used ids to select and style elements with CSS.
But here, what we’re doing is using an id to grab an element—the <p> element
with the id “greenplanet”—from the DOM.

Once we have the right element, we
can modify it. We’ll get to that in just
a moment; for now, let’s focus on how
getElementById works by tracing
through these steps:

Getting an element with getElementById

var planet = document.getElementById("greenplanet"); 2

3

You found me! I’m the <p>
element with the “greenplanet”
id. Just tell me what you need

to do. p

Browser here, I’m
reading the page and
creating a DOM of it.

1

body

p id =”greenplanet” p id =”redplanet” p id =”blueplanet”

All is
well

Nothing to
report

All systems
A-OK

head

html

document

Here’s our call to getElementById. And we’re looking for the element
with an id of “greenplanet”.We’ll assign the element that is returned to the planet variable for later use.

We’re using document to get
access to the DOM.

JavaScript code
here, I’m looking for an
element in the DOM with

an id of “greenplanet”.

Follow the steps 1, 2, 3.

you are here 4 241

interacting with your web page

Get the content (text or HTML).

Read an attribute.

Change the content.

Add an attribute.

Change an attribute.

Remove an attribute.

Things you can do with an element object.

When you grab an element from the DOM using getElementById, what you get is
an element object, which you can use to read, change or replace the element’s content and
attributes. And here’s the magic: when you change an element, you change what is displayed
in your page as well.

But, first things first. Let’s take another look at the element object we just grabbed from
the DOM. We know that this element object represents the <p> element in our page that
has the id “greenplanet” and that the text content in the element is “All is well”. Just like
other kinds of JavaScript objects, an element object has properties and methods. In the
case of an element object, we can use these properties and methods to read and change
the element. Here are a few things you can do with element objects:

What, exactly, am I getting from the DOM?

div
body

em

p

What we want to do with our <p> element—which, remember, is the <p> element with
the id “greenplanet”—is change the content “All is well” to “Red Alert: hit by phaser
fire!”. We’ve got the element object stashed in the planet variable in our code; let’s use
that to modify one of its properties, innerHTML:

var planet = document.getElementById("greenplanet");

planet.innerHTML = "Red Alert: hit by phaser fire!";

The planet variable contains an element
object-the element object that is the
“greenplanet” <p> element.

We can use the innerHTML property of the element object to change the content of the element!

242 Chapter 6

using innerhtml

Finding your inner HTML

Red Alert: hit by
phaser fire!

 JavaScript console

All is well

JavaScript console

And the web page
changes too!

The innerHTML property is an important property that we can use to read or
replace the content of an element. If you look at the value of innerHTML then
you’ll see the content contained within the element, not including the HTML
element tags. The “withIN” is why it’s called “inner” HTML. Let’s try a little
experiment. We’ll try displaying the content of the planet element object in the
console by logging the innerHTML property. Here’s what we get:

var planet = document.getElementById("greenplanet");
console.log(planet.innerHTML);

We’re just passing the planet.innerHTML property to console.log to log to the console.

The content of the innerHTML property is
just a string, so it displays just like any ot

her
string in the console.

Now let’s try changing the value of the innerHTML property. When we
do this, we’re changing the content of the “greenplanet” <p> element in
the page, so you’ll see your page change too!

var planet = document.getElementById("greenplanet");
planet.innerHTML = "Red Alert: hit by phaser fire!";
console.log(planet.innerHTML);

Now we’re changing the content of the element by setting its innerHTML property to the string “Red Alert: hit by phaser fire!”

So when we log the value of the
innerHTML property to the
console we see the new value.

you are here 4 243

interacting with your web page

Hey, sit down; take a quick break. You might be saying to yourself, “Wait, I remember
something about ids and classes but I don’t remember the specifics, and don’t they have
something to do with CSS anyway?” No, problem, let’s just have a quick refresher, get some
context, and we’ll have you back on your way in no time...

Let’s look at an example:

<div id="menu">

 ...

</div>

And once we have that, we can select it with CSS to style it. Like this:

div#menu {

 background-color: #aaa;

}

And we can access this element through its id in JavaScript too:

We’re giving this <div> a unique id of
“menu”. It should be the only element in
your page with the id “menu”.

div#menu selects the <div>
with the id menu, so we can
apply style to that element,
and only that element.

div#menu
is an id
selector.

<h3 class="drink">Strawberry Blast</h3>

<h3 class="drink">Lemon Ice</h3>

Both <h3> elements are in the class “drink”. A class is like a group; you can have multiple elements in the same group.

Don’t forget, there’s another way to label your elements: with classes. Classes give us
a way to label a set of elements, like this:

With HTML, ids give us a way to uniquely identify an element, and, once an
element is unique, we can use that to select it with CSS for styling. And, as you’ve
seen, we can get an element by its id in JavaScript as well.

A Quick Refresher

var myMenu = document.getElementById("menu");

And we can select elements by classes too, both in CSS and JavaScript. We’ll see how
to make use of classes with JavaScript in a bit. And, by the way, if this reminder isn’t
quite enough, check out Chapter 7 of Head First HTML and CSS, or your favorite
HTML & CSS reference guide.

244 Chapter 6

changing the dom

Red Alert: hit by
phaser fire!

body

p id =”greenplanet” p id =”redplanet” p id =”blueplanet”

Nothing to
report

All systems
A-OK

head

html

document

Any changes to the DOM are reflected in the
browser’s rendering of the page, so you’ll see the
paragraph change to contain the new content!

So, what exactly happens when you change the content of an element using innerHTML?
What you’re doing is changing actual content of your web page, on the fly. And when you
change the content in the DOM, you’ll see that change immediately in your web page, too.

What happens when you change the DOM

All is
well

body

p id =”greenplanet” p id =”redplanet” p id =”blueplanet”

Nothing to
report

All systems
A-OK

head

html

document

This is the element whose
content we’re going to change...

The web page you see and the
DOM behind the scenes before
you change the content with
innerHTML...

... and the web page you see and
the DOM behind the scenes
after you change the content
with innerHTML.

Before...

... and after.

you are here 4 245

interacting with your web page

Q: What happens if I use document.
getElementById and pass in an id that doesn’t exist?

A: If you try to get an element from the DOM by id,
and that id doesn’t exist in an element, then the call to
getElementById returns a null value. Testing for null is
a good idea when you use getElementById to ensure
that the element is there before you try to access its
properties. We’ll talk more about null in the next chapter.

Q: Can we use document.getElementById to get
elements by class as well—for instance, say I have a
bunch of elements in the class “planets”?

A: No, but you’re thinking along the right lines. You
can only use getElementById with an id. But there is
another DOM method named getElementsByClassName
that you can use to get elements by class name.
With this method, what you get back is a collection
of elements that belong to the class (because
multiple elements can be in the same class). Another
method that returns a collection of elements is
getElementsByTagName, which returns all elements
that match the tag name you specify. We’ll see
getElementsByTagName a little later in the book and
see how to handle the collection of elements it returns.

Q: What exactly is an element object anyway?

A: Great question. An element object is the browser’s
internal representation of what you type into your HTML
file, like <p>some text</p>. When the browser loads and
parses your HTML file, it creates an element object for
every element in your page, and adds all those element
objects to the DOM. So the DOM is really just a big
tree of element objects. And, keep in mind that, just like
other objects, element objects can have properties, like
innerHTML, and methods, too. We’ll explore a few more
of the properties and methods of element objects later
in the book.

Q: I would have expected a property named
“content” or maybe “html” in the element object.
Why is it called innerHTML instead?

A: We agree, it’s kind of a weird name. The
innerHTML property represents all the content contained
in your element, including other nested elements (like
a paragraph might include and elements
in addition to the text in the paragraph). In other words,
it’s the HTML that’s “INside” your element. Is there an
outerHTML property? Yes! And that property gets you
all the HTML inside the element, as well as the element
itself. In practice you won’t see outerHTML used very
often, but you will see innerHTML used frequently to
update the content of elements.

Q: So by assigning something to innerHTML
I can replace the content of any element with
something else. What if I used innerHTML to change,
say, the <body> element’s content?

A: Right, innerHTML gives you a convenient way to
replace the content of an element. And, yes, you could
use it to replace the content of the <body> element,
which would result in your entire page being replaced
with something new.

246 Chapter 6

Here’s a DOM with a secret message
hidden in it. Evaluate the code below to
reveal the secret! The answer is upside
down on this page.

document.getElementById("e7")

document.getElementById("e8")

document.getElementById("e16")

document.getElementById("e9")

document.getElementById("e18")

document.getElementById("e13")

document.getElementById("e12")

document.getElementById("e2")

Write the element each line of code
selects, as well as the content of the
element to reveal the secret message!

bu
t

st
ro

ng
 id

=”
e1

3”

Th
e

It
 a

in
’t

do
cu

m
en

t

ht
m

l

ha
s

co
m

e

h1
 id

=”
e1

”

p

h2
 id

=”
e3

”

di
v

id
=”

e4
”

p
id

=”
e5

”
p

id
=”

e1
0”

br
ag

gi
n’

ba
ck

it
 u

p!I’
m

no
t

fu
nn

y
I

do

ul

li
id

=”
e1

5”

li
id

=”
e1

6”

li
id

=”
e1

7”

li
id

=”
e1

8”

li
id

=”
e1

9”

Pl
ea

se

tu
rn

th
e

pa
ge

s

on
e

at
 a

 t
im

e!

a
lo

t

em
 id

=”
e1

2”
st

ro
ng

 id
=”

e1
4”

la
ug

h

sp
an

 id
=”

e6
”

if

sp
an

 id
=”

e7
”

yo
u

sp
an

 id
=”

e8
”

ca
n

p

ti
m

e

ti
m

e
id

=”
e2

”

di
v

id
=”

e1
1”

p
id

=”
e9

”

Se
cr

et
 M

es
sa

ge

ti
tl

e
m

et
a

sc
ri

pt

bo
dy

he
ad

Answer: “you can turn back pages but not time”

you are here 4 247

interacting with your web page

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Planets</title>
 <script>
 var planet = document.getElementById("greenplanet");
 planet.innerHTML = "Red Alert: hit by phaser fire!";
 </script>
</head>
<body>
 <h1>Green Planet</h1>
 <p id="greenplanet">All is well</p>
 <h1>Red Planet</h1>
 <p id="redplanet">Nothing to report</p>
 <h1>Blue Planet</h1>
 <p id="blueplanet">All systems A-OK</p>
</body>
</html>

A test drive around the planets
Okay, you know how to use document.getElementById to get access
to an element, and how to use innerHTML to change the content of that
element. Let’s do it for real, now.

Here’s the HTML for the planets. We’ve got a <script> element in the
<head> where we’ll put the code, and three paragraphs for the green, red,
and blue planets. If you haven’t already, go ahead and type in the HTML
and the JavaScript to update the DOM:

Here's our script
element with the code.

Here’s the <p> element
you’re going to change
with JavaScript.

After you’ve got it typed in, go ahead and load the page
into your browser and see the DOM magic happen on the
green planet.

UH OH! Houston, we’ve got a
problem, the green planet still
shows “All is well”. What’s wrong?

Just like you saw before, we’re
getting the <p> element with
the id “greenplanet” and
changing its content.

248 Chapter 6

thinking about why the code doesn’t work

Oh yeah, we forgot to mention one thing.
When you’re dealing with the DOM it’s important to
execute your code only after the page is fully loaded. If
you don’t, there’s a good chance the DOM won’t be
created by the time your code executes.

Let’s think about what just happened: we put code in
the <head> of the page, so it begins executing before
the browser even sees the rest of the page. That’s a big
problem because that paragraph element with an id of

“greenplanet” doesn’t exist, yet.

So what happens exactly? The call to
getElementById returns null instead of the element
we want, causing an error, and the browser, being the
good sport that it is, just keeps moving and renders
the page anyway, but without the change to the green
planet’s content.

How do we fix this? Well, we could move the code to
the bottom of the <body>, but there’s actually a more
foolproof way to make sure this code runs at the right
time; a way to tell the browser “run my code after
you’ve fully loaded in the page and created the DOM.”
Let’s see how to do that next.

I’ve triple-checked my
markup and code, and this just
isn’t working for me either. I’m not
seeing any changes to my page.

Check out your
console when this
page loads, you'll
see the error in
most browsers.
The console tool is
good for debugging.

Uncaught TypeError:
Cannot set property
'innerHTML' of null

 JavaScript console

you are here 4 249

interacting with your web page

<script>

function init() {

 var planet = document.getElementById("greenplanet");

 planet.innerHTML = "Red Alert: hit by phaser fire!";

}

window.onload = init;

</script>

Don’t even think about running my code
until the page is fully loaded!
Ah, but how? Besides moving the code to the bottom of the body, there’s
another—and, one might argue—cleaner way to do it: with code.

Here’s how it works: first create a function that has the code you’d like
executed once the page is fully loaded. After you’ve done that, you take the
window object, and assign the function to its onload property.

What does that do? The window object will call any function you’ve
assigned to its onload property, but only after the page is fully loaded. So,
thank the designers of the window object for giving you a way to supply
the code that gets called after the page has loaded. Check this out:

First, create a function named
init and put your existing code
in the function. Here's the code we had

before, only now it’s in the
body of the init function.

Here, we’re assigning the function init to the
window.onload property. Make sure you don't
use parentheses after the function name! We're
not calling the function; we're just assigning the
function value to the window.onload property.

Let's try that again...

Go ahead and reload the page with the new init function and the
onload property. This time the browser will load the page completely,
build the entire DOM and only then call your init function.

Ah, there we go, now the
green planet shows the Red
Alert, just like we wanted.

You can call this function
anything you want, but it’s
often called init by convention.

The window object is built-in
to JavaScript. It represents
the browser window.

250 Chapter 6

the browser and an event handler

You say “event handler,” I say “callback”
Let’s think about how onload works just a bit more, because it uses a common
coding pattern you’ll see over and over again in JavaScript.

Let’s say there’s a big important event that’s going to occur, and you definitely want
to know about it. Say that event is the “page is loaded” event. Well, a common way
to deal with that situation is through a callback, also known as an event handler.

A callback works like this: give a function to the object that knows about the event.
When the event occurs, that object will call you back, or notify you, by calling that
function. You’re going to see this pattern in JavaScript for a variety of events.

Hey
browser, I'm waiting

until you’ve loaded the page
before I can get some things

done.

Well don’t sit
around waiting, just give me

a callback function and I'll call
it when I'm finished.

No
problem... here
ya go, it’s named

init.

The callback, or event
handler, if you prefer.

The browser, or,
more specifically, the
window object.

you are here 4 251

interacting with your web page

Got it! I’ve set my
onload property to init so
I'll be sure to remember...

A bit later

Hey
browser, thanks for

remembering to call init! Went
off without a hitch!

the init method is called and completes

And once init is called, we see the update to our page!

Whew, that
was hard work

but the page is loaded. Let’s see
now... I need to call whatever my

onload property is referencing... ah
yes, the function init. Calling init!

252 Chapter 6

thinking about functions and event handlers

Interesting. So I can
use functions to package up code that can
be called when some event happens. What
other kinds of events can I handle with
functions like this?

That’s right, and there are many kinds
of events you can handle if you want to.
Some events, like the load event, are generated by the
browser, while others are generated by a user interacting
with the page, or even by your own JavaScript code.

You’ve seen an example of “the page is loaded” event,
which we handle by setting the onload property of the
window object. You can also write event handlers that
handle things like “call this function every five seconds,”
or “some data arrived from a web service that we need
to deal with,” or “the user clicked a button and we need
to get some data from a form,” and there are many more.
All these types of events are heavily used when you’re
creating pages that act more like applications than static
documents (and who doesn’t want that). Right now, we’ve
had just a brief glimpse of event handlers, but we’ll be
spending a lot more time on them a bit later given their
important role in JavaScript programming.

you are here 4 253

interacting with your web page

<!doctype html>

<html lang="en">

<head>

 <title>My Playlist</title>

 <meta charset="utf-8">

 <script>

 ____________ addSongs() {

 var song1 = document.______________("________");

 var _____ = _______________________("________");

 var _____ = ________.getElementById("________");

 ________.innerHTML = "Blue Suede Strings, by Elvis Pagely";

 __________________ = "Great Objects on Fire, by Jerry JSON Lewis";

 song3.____________ = "I Code the Line, by Johnny JavaScript";

 }

 window.___________ = ____________;

 </script>

</head>

<body>

 <h1>My awesome playlist</h1>

 <ul id="playlist">

 <li id="song1">

 <li id="song2">

 <li id="song3">

</body>

</html>

Here’s some HTML for a playlist of songs, except that the list is
empty. It’s your job to complete the JavaScript below to add the
songs to the list. Fill in the blank with the JavaScript that will do
the job. Check your answer with our solution at the end of the
chapter before you go on.

When you get the
JavaScript working, this is
what the web page will look
like after you load the page.

Fill in the blanks with the missing
code to get the playlist filled out.

Here’s the HTML
for the page.

Here’s our script. This code should fill in
the list of songs below, in the .

Here’s the empty list of songs. The
code above should add content to
each in the playlist.

254 Chapter 6

modifying the page style with javascript

Why stop now? Let’s take it further

Let’s think for a second about what you just did: you took a static
web page and you dynamically changed the content of one of its
paragraphs using code. It seems like a simple step, but this is really
the beginning of making a truly interactive page.

Let’s take the second step: now that you know how to get your
hands on an element in the DOM, let’s set an attribute of an
element with code.

Why would that be interesting? Well, take our simple planets
example. When we set the paragraph to read “Red Alert,” we
could also set the paragraph’s color to red. That would certainly
more clearly communicate our message.

Here’s how we’re going to do that:

1 We’ll define a CSS rule for the class "redtext" that
specifies a red color for the text of the paragraph.
That way any element we add to this class will have
red text.

2 Next, we’ll add code to take the greenplanet paragraph
element and add the class “redtext”.

That’s it. All we need now is to learn how to set an attribute of an
element and then we can write the code.

How about getting another part of your brain working? We’re going to need the
CSS style for the class “redtext” that sets the color to “red” for the text in the planet
paragraph. If it’s been a while since you wrote CSS, don’t worry; give it a shot anyway.
If you can do it in your sleep, awesome. Either way, you'll find the answer at the end of
this chapter.

And that’s our goal, which we’ll
fully realize in Chapter 8.

you are here 4 255

interacting with your web page

How to set an attribute with setAttribute

Element objects have a method named setAttribute that you can call to set the
value of an HTML element’s attribute. The setAttribute method looks like this:

planet.setAttribute("class", "redtext");

The method takes two arguments,
the name of the attribute you
want to set or change...

And we use its setAttribute method
to either add a new attribute or
change an existing attribute.

... and the value you'd like
to set that attribute to.

Before...

And here’s the element after we call
setAttribute. Now you can see it’s got
two attributes, id and class.

Here's the element before we
call the setAttribute method
on it. Notice this element
already has one attribute, id.

All is
well

body

p id =”greenplanet” p id =”redplanet” p id =”blueplanet”

Nothing to
report

All systems
A-OK

head

html

document

All is
well

body

p id =”greenplanet” class="redtext" p id =”redplanet” p id =”blueplanet”

Nothing to
report

All systems
A-OK

head

html

document

Remember, when we call
the setAttribute method,
we’re changing the element
object in the DOM, which
immediately changes what you
see displayed in the browser.

We take our element object.
Note if the attribute
doesn’t exist a new one will
be created in the element.

And After

We can call setAttribute on any element to change the value of an existing
attribute, or, if the attribute doesn’t already exist, to add a new attribute to the element.
As an example, let’s check out how executing the code above affects our DOM.

256 Chapter 6

getting the value of an attribute

More fun with attributes!
(you can GET attributes too)

var scoop = document.getElementById("raspberry");

var altText = scoop.getAttribute("alt");

console.log("I can't see the image in the console,");

console.log(" but I'm told it looks like: " + altText);

Need to know the value of an attribute
in an element? No problem, we have a
getAttribute method that you can call to get
the value of an HTML element’s attribute.

What happens if my attribute doesn’t
exist in the element?

Get a reference to the element with
getElementById, then use the element's
getAttribute method to get the attribute.

Pass in the name of
the attribute you
want the value of.

Remember what happens when you call getElementById
and the id doesn’t exist in the DOM? You get null. Same
thing with getAttribute. If the attribute doesn’t exist,
you’ll get back null. Here’s how you test for that:

var scoop = document.getElementById("raspberry");

var altText = scoop.getAttribute("alt");

if (altText == null) {

 console.log("Oh, I guess there isn't an alt attribute.");

} else {

 console.log("I can't see the image in the console,");

 console.log(" but I'm told it looks like " + altText);

}

Test to make sure there actually
is an attribute value returned.

The call to getElementById can return a null value if the element id does not

exist in the DOM. So, to follow best practices, you’ll want to make sure you

test for null after getting elements too. We could follow that rule ourselves,

but then the book would end up being 1000 pages longer.

Don’t forget getElementById can return null too!

Any time you ask for something, you need to make sure you got back what

you expected...

If there’s no attribute
value, we do this...

... and if there is one,
we can show the text
content in the console.

you are here 4 257

interacting with your web page

Meanwhile, back at the ranch solar system...

It’s time to put all the code for the planets together and do a final test drive.

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Planets</title>
 <style>
 .redtext { color: red; }
 </style>
 <script>
 function init() {
 var planet = document.getElementById("greenplanet");
 planet.innerHTML = "Red Alert: hit by phaser fire!";
 planet.setAttribute("class", "redtext");
 }
 window.onload = init;
 </script>
</head>
<body>
 <h1>Green Planet</h1>
 <p id="greenplanet">All is well</p>
 <h1>Red Planet</h1>
 <p id="redplanet">Nothing to report</p>
 <h1>Blue Planet</h1>
 <p id="blueplanet">All systems A-OK</p>
</body>
</html>

Test driving the planets one last time...

Load this page up in your browser and you’ll see the
green planet has been hit by phaser fire, and now we see
the message in bright red, so we’ll be sure not to miss it!

Here’s all the HTML, CSS and
JavaScript for the planets.

We’ve got the redtext class included here so
when we add “redtext” as the value for the class
attribute in our code, it turns the text red.

And to review: we’re getting the greenplanet element, and stashing the value in the
planet variable. Then we’re
changing the content of the element, and finally adding a class attribute that will turn the text of the element red.We’re calling the init function only

when the page is fully loaded!

258 Chapter 6

things you can do with the dom

Look up and
retrieve one or
more elements
from the DOM.

So what else is a DOM good for anyway?
The DOM can do a fair bit more than we’ve seen so far and we’ll be seeing
some of its other functionality as we move forward in the book, but for now
let’s just take a quick look so you’ve got it in the back of your mind:

form

label input input

Of course you already know this because
we’ve been using document.getElementById,
but there are other ways to get elements
as well; in fact, you can use tag names, class
names and attributes to retrieve not just
one element, but a whole set of elements
(say all elements in the class “on_sale”).
And you can get form values the user has
typed in, like the text of an input element.

Get elements from the DOM.

li

Create and add elements to the DOM.
You can create new elements and you
can also add those elements to the DOM.
Of course, any changes you make to the
DOM will show up immediately as the
DOM is rendered by the browser (which
is a good thing!).

Remove elements from the DOM.
You can also remove elements from the
DOM by taking a parent element and
removing any of its children. Again,
you’ll see the element removed in your
browser window as soon as it is deleted
from the DOM.

ul

li li

Traverse the elements in the DOM.
Once you have a handle to an element, you
can find all its children, you can get its
siblings (all the elements at the same level),
and you can get its parent. The DOM is
structured just like a family tree!

ul id=”list”

li

Create new
elements...

... and add them
to the DOM
by attaching
them to another
element in the
tree.

Get all the
children of
an element...

Remove
existing
elements.

ul

li li

li

... or get the
parent of
an element.

... get an element’s siblings...

you are here 4 259

interacting with your web page

 � The Document Object Model, or DOM, is
the browser’s internal representation of your
web page.

 � The browser creates the DOM for your page
as it loads and parses the HTML.

 � You get access to the DOM in your
JavaScript code with the document object.

 � The document object has properties and
methods you can use to access and modify
the DOM.

 � The document.getElementById method
grabs an element from the DOM using its id.

 � The document.getElementById method
returns an element object that represents an
element in your page.

 � An element object has properties and
methods you can use to read an element’s
content, and change it.

 � The innerHTML property holds the text
content, as well as all nested HTML content,
of an element.

 � You can modify the content of an element by
changing the value of its innerHTML property.

 � When you modify an element by changing its
innerHTML property, you see the change in
your web page immediately.

 � You can get the value of an element’s
attributes using the getAttribute method.

 � You can set the value of an element’s
attributes using the setAttribute method.

 � If you put your code in a <script> element in
the <head> of your page, you need to make
sure you don’t try to modify the DOM until the
page is fully loaded.

 � You can use the window object’s onload
property to set an event handler, or callback,
function for the load event.

 � The event handler for the window’s onload
property will be called as soon as the page is
fully loaded.

 � There are many different kinds of events we
can handle in JavaScript with event handler
functions.

260 Chapter 6

javascript crossword

JavaScript cross
Load the DOM into your brain with this puzzle.

1 2 3

4

5 6

7 8

9

10

11

12 13

14

15

Across
5. Functions that handle events are known as

event ________.
7. Dr. Evel's passcode clue was in the element

with the id _____.
9. Assign a ________ to the window.onload

property to handle the load event.
12. Use the element object's property,

________, to change the HTML inside an
element.

14. The setAttribute method is a method of an
________ object.

15. The DOM is shaped like a _____.

Down
1. Which planet gets hit by phaser fire?
2. Use the _______ to see if you have errors

in your code.
3. It's important to make sure the ____ is

completely loaded before using code to get
or change elements in the page.

4. The getElementById method gets an element
by its ___.

6. Change the class of an element using the
_________ method.

8. The ______ object is always at the top of
the DOM tree.

10. It's a good idea to check for ____ when
using getElementById.

11. When you load a page into the browser, the
browser creates a ____ representing all the
elements and content in the page.

13. getElementById is a ________ of the
document object.

ACROSS
5. Functions that handle events are known as event

________.
7. Dr. Evel’s passcode clue was in the element with the
id _____.
9. Assign a ________ to the window.onload property to
handle the load event.
12. Use the element object’s property, ________, to
change the HTML inside an element.
14. The setAttribute method is a method of an ________
object.
15. The DOM is shaped like a _____.

DOWN
1. Which planet gets hit by phaser fire?
2. Use the _______ to see if you have errors in your
code.
3. It’s important to make sure the ____ is completely
loaded before using code to get or change elements in
the page.
4. The getElementById method gets an element by its
___.
6. Change the class of an element using the _________
method.
8. The ______ object is always at the top of the DOM
tree.
10. It’s a good idea to check for ____ when using
getElementById.
11. When you load a page into the browser, the browser
creates a ____ representing all the elements and content
in the page.
13. getElementById is a ________ of the document
object.

you are here 4 261

interacting with your web page

Your job is to act like
you’re the browser. You
need to parse the HTML
and build your very own
DOM from it. Go ahead
and parse the HTML to
the right, and draw your
DOM below. We’ve already
started it for you.

Here’s our DOMdocument

html

head

title

body

h1 h2 id=”movie1” h2 id=”movie2”p p

span

<!doctype html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <title>Movies</title>

 </head>

 <body>

 <h1>Movie Showtimes</h1>

 <h2 id="movie1" >Plan 9 from Outer Space</h2>

 <p>Playing at 3:00pm, 7:00pm.

 Special showing tonight at midnight!

 </p>

 <h2 id="movie2">Forbidden Planet</h2>

 <p>Playing at 5:00pm, 9:00pm.</p>

 </body>

</html>

BE the Browser
Solution

em

meta

262 Chapter 6

exercise solutions

<!doctype html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>My Playlist</title>

 <script>

 ____________ addSongs() {

 var song1 = document.______________("________");

 var _____ = _______________________("________");

 var _____ = ________.getElementById("________");

 ________.innerHTML = "Blue Suede Strings, by Elvis Pagely";

 __________________ = "Great Objects on Fire, by Jerry JSON Lewis";

 song3.____________ = "I Code the Line, by Johnny JavaScript";

 }

 window.___________ = ____________;

 </script>

</head>

<body>

 <h1>My awesome playlist</h1>

 <ul id="playlist">

 <li id="song1">

 <li id="song2">

 <li id="song3">

</body>

</html>

Here’s some HTML for a playlist of songs, except that the list is
empty. It’s your job to complete the JavaScript below to add the
songs to the list. Fill in the blank with the JavaScript that will do
the job. Here’s our solution.

This is what the web
page looks like after
you load the page.

Fill in the blanks with the missing
code to get the playlist filled out.

Here’s the HTML
for the page.

Here’s our script. This code should fill in
the list of songs below, in the .

Here’s the empty list of songs. The
code above should add content to
each in the playlist.

function
getElementById

song1

song2
song3

song1

song2.innerHTML
innerHTML

onload addSongs

song2
song3

document.getElementById
document

you are here 4 263

interacting with your web page

JavaScript cross Solution
Load the DOM into your brain with this puzzle.

How about getting another part of your brain working? We’re going to need the
CSS style for the class “redtext” that sets the color to “red” for the text in the planet
paragraph. If it’s been a while since you wrote CSS, don’t worry; give it a shot anyway. If
you can do it in your sleep, awesome. Here’s our solution.

.redtext { color: red; }

G
1

C
2

P
3

I
4

R O A
H
5

A N D L E R S
6

N G
E E S C

7
O D

8
E 9

F
9

U N C T I O N O
P A L C
L T E N

10
U

A T U D
11

M
I
12

N N E R H T M
13

L O E
E I E

14
L E M E N T

T B T T
U H
T O

T
15

R E E D

Across
5. Functions that handle events are known as

event ________. [HANDLERS]
7. Dr. Evel's passcode clue was in the element

with the id _____. [CODE9]
9. Assign a ________ to the window.onload

property to handle the load event.
[FUNCTION]

12. Use the element object's property,
________, to change the HTML inside an
element. [INNERHTML]

14. The setAttribute method is a method of an
________ object. [ELEMENT]

15. The DOM is shaped like a _____. [TREE]

Down
1. Which planet gets hit by phaser fire?

[GREENPLANET]
2. Use the _______ to see if you have errors

in your code. [CONSOLE]
3. It's important to make sure the ____ is

completely loaded before using code to get
or change elements in the page. [PAGE]

4. The getElementById method gets an element
by its ___. [ID]

6. Change the class of an element using the
_________ method. [SETATTRIBUTE]

8. The ______ object is always at the top of
the DOM tree. [DOCUMENT]

10. It's a good idea to check for ____ when
using getElementById. [NULL]

11. When you load a page into the browser, the
browser creates a ____ representing all the
elements and content in the page. [DOM]

this is a new chapter 265

Serious types
7 types, equality, conversion and all that jazz

It’s time to get serious about our types. One of the great

things about JavaScript is you can get a long way without knowing a lot of

details of the language. But to truly master the language, get that promotion

and get on to the things you really want to do in life, you have to rock at types.

Remember what we said way back about JavaScript? That it didn’t have the

luxury of a silver-spoon, academic, peer-reviewed language definition? Well

that’s true, but the academic life didn’t stop Steve Jobs and Bill Gates, and it

didn’t stop JavaScript either. It does mean that JavaScript doesn’t have the…

well, the most thought-out type system, and we’ll find a few idiosyncrasies

along the way. But, don’t worry, in this chapter we’re going to nail all that down,

and soon you’ll be able to avoid all those embarrassing moments with types.

266 Chapter 7

thinking about types

Numbers
Booleans

Strings

Primitive Types Objects

Car
Dog

Song

Element Math

Document

Now that you’ve had a lot of experience working with JavaScript
types—there’s your primitives with numbers, strings, and booleans,
and there’s all the objects, some supplied by JavaScript (like the
Math object), some supplied by the browser (like the document
object), and some you’ve written yourself—aren’t you just basking
in the glow of JavaScript’s simple, powerful and consistent type
system?

JavaScript also supplies a lot of useful objects,
but you can also create your own or use
objects other developers have written.

These are all supplied by JavaScript.

The truth is out there...

Low-level basic types for
numbers, strings, booleans.

High-level objects used to represent the things in your problem space.

After all what else would you expect from the official language of
Webville? In fact, if you were a mere scripter, you might think about
sitting back, sipping on that Webville Martini, and taking a much
needed break…

But you’re not a mere scripter, and something is amiss. You have that
sinking feeling that behind Webville’s picket fences something bizarre
is at work. You’ve heard the reports of sightings of strings that
are acting like objects, you’ve read in the blogs about a (probably
radioactive) null type, you’ve heard the rumors that the JavaScript
interpreter as of late has been doing some weird type conversion.
What does it all mean? We don’t know, but the truth is out there and
we’re going to uncover it in this chapter, and when we do, we might
just turn what you think of true and false upside down.

you are here 4 267

types, equality, conversion and all that jazz

Who am I?

I get returned from a function when there

is no return statement.

I’m the value of a variable when I haven’t

been assigned a value.

I’m the value of an array item that doesn’t

exist in a sparse array.

I’m the value of a property that doesn’t

exist.

I’m the value of a property that’s been

deleted.

zero

empty object

null

undefined

NaN

infinity

area 51

...---...

{}

[]

A bunch of JavaScript values and party crashers, in full costume, are
playing a party game, “Who am I?” They give you a clue, and you try to
guess who they are, based on what they say. Assume they always tell
the truth about themselves. Draw an arrow from each sentence to the
name of one attendee. We’ve already guessed one of them for you.
Check your answers at the end of the chapter before you go on.

If you find this exercise difficult, it’s okay to cheat and look at the answers.

Tonight’s
attendees:

268 Chapter 7

undefined

Watch out, you might bump into undefined
when you aren’t expecting it...
As you can see, whenever things get shaky—you need a variable that’s not been
initialized yet, you want a property that doesn’t exist (or has been deleted), you
go after an array item that isn’t there—you’re going to encounter undefined.

But what the heck is it? It’s not really that complicated. Think of undefined as the
value assigned to things that don’t yet have a value (in other words they haven’t been
initialized).

So what good is it? Well, undefined gives you a way to test to see if a variable (or
property, or array item) has been given a value. Let’s look at a couple of examples,
starting with an unassigned variable:

You can check to see if a variable like x is undefined. Just compare
it to the value undefined.var x;

if (x == undefined) {

 // x isn’t defined! just deal with it!

}

var customer = {

 name: "Jenny"

};

if (customer.phoneNumber == undefined) {

 // get the customer's phone number

}

Or, how about an object property:
You can check to see if
a property is undefined,
again by comparing it to
the value undefined.

Note that we’re using the value
undefined here, not to be confused
with the string “undefined”.

Q: When do I need to check if a variable (or property or array
item) is undefined?

A: Your code design will dictate this. If you’ve written code so that
a property or variable may not have a value when a certain block of
code is executed, then checking for undefined gives you a way to
handle that situation rather than computing with undefined values.

Q: If undefined is a value, does it have a type?

A: Yes, it does. The type of undefined is undefined. Why? Well
our logic (work with us here) is this: it isn’t an object, or a number or
a string or a boolean, or really anything that is defined. So why not
make the type undefined, too? This is one of those weird twilight
zones of JavaScript you just have to accept.

you are here 4 269

types, equality, conversion and all that jazz

IN THE LABORATORY
In the laboratory we like to take things apart, look under the hood,
poke and prod, hook up our diagnostic tools and check out what
is really going on. Today, we’re investigating JavaScript’s type
system and we’ve found a little diagnostic tool called typeof to
examine variables. Put your lab coat and safety goggles on, and
come on in and join us.

The typeof operator is built into JavaScript. You can use it to
probe the type of its operand (the thing you use it to operate on).
Here’s an example:

var subject = "Just a string";

var probe = typeof subject;

console.log(probe); JavaScript console
string

The typeof operator takes an
operand, and evaluates to the
type of the operand.

The type here is “string". Note
that typeof uses strings to
represent types, like “string",

“boolean", “number", “object",
“undefined", and so on.

Now it’s your turn. Collect the data for the
following experiments:
var test1 = "abcdef";
var test2 = 123;
var test3 = true;
var test4 = {};
var test5 = [];
var test6;
var test7 = {"abcdef": 123};
var test8 = ["abcdef", 123];
function test9(){return "abcdef"};

console.log(typeof test1);
console.log(typeof test2);

console.log(typeof test3);
console.log(typeof test4);
console.log(typeof test5);
console.log(typeof test6);
console.log(typeof test7);
console.log(typeof test8);
console.log(typeof test9);

JavaScript console

Here's the test data,
and the tests.

Put your results here. Are
there any surprises?

270 Chapter 7

thinking about null

I remember from the DOM chapter that
getElementById returns null, not undefined,
if the id doesn’t exist. What exactly is
null, and why doesn’t getElementById return
undefined instead?

Ah yes, this causes a lot of confusion. There are many
languages that have the concept of a value that means “no object.”
And, it’s not a bad idea—take the document.getElementById
method. It’s supposed to return an object right? So, what happens if
it can’t? Then we want to return something that says “I would have
been an object if there was one, but we don’t have one.” And that’s
what null is.

You can also set a variable to null directly:

 var killerObjectSomeday = null;

What does it mean to assign the value null to a variable? How about
“We intend to assign an object to this variable at some point, but we
haven’t yet.”

Now, if you’re scratching your head and saying “Hmm, why didn’t
they just use undefined for that?” then you’re in good company.
The answer comes from the very beginnings of JavaScript. The idea
was to have one value for variables that haven’t been initialized to
anything yet, and another that means the lack of an object. It isn’t
pretty, and it’s a little redundant, but it is what it is at this point. Just
remember the intent of each (undefined and null), and know that
it is most common to use null in places where an object should be
but one can’t be created or found, and it is most common to find
undefined when you have a variable that hasn’t been initialized, or
an object with a missing property, or an array with a missing value.

BACK IN THE LABORATORY
Oops, we forgot null in our test data. Here’s the missing test case:

var test10 = null;

console.log(typeof test10);

JavaScript console

Put your results here.

you are here 4 271

types, equality, conversion and all that jazz

There are many functions and methods out there in the world that return
objects, and you’ll often want to make sure what you’re getting back is a full-
fledged object, and not null, just in case the function wasn’t able to find one
or make one to return to you. You’ve already seen examples from the DOM
where a test is needed:

var weather = document.getElementById("weatherDiv");

if (weather != null) {

 // create content for the weather div

}

How to use null

Keep in mind that getting null doesn’t necessarily mean something is wrong.
It may just mean something doesn’t exist yet and needs to be created, or
something doesn’t exist and you can skip it. Let’s say users have the ability
to open or close a weather widget on your site. If a user has it open there’s
a <div> with the id of “weatherDiv”, and if not, there isn’t. All of a sudden
null becomes quite useful:

var header = document.getElementById("header");

if (header == null) {

 // okay, something is seriously wrong if we have no header

}

Blaine, MissouriIt is always 67
degrees with a 40% chance of rain.

Let’s look for the all-
important header element.

Uh oh, it doesn’t exist. Abandon ship!

Let’s see if the element
with id “weatherDiv” exists.

If the result of getElementById isn’t null, then
there is such an element in the page. Let’s create a
nice weather widget for it (presumably getting the
weather for the local area).

Remember, null is intended to represent
an object that isn’t there.

We can use null to check
to see if an object exists yet or not.

272 Chapter 7

NaN is weird

NaN != NaNNaN != NaN

Believe It or Not!!

The Number

that isn't a Number
Believe it or not, there are numeric
values that are impossible to represent
in JavaScript! JavaScript can’t express
these values, so it has a stand-in value
that it uses:

It’s easy to write JavaScript
statements that result in numeric

values that are not well defined.

Here are a few examples:

var a = 0/0;

var b = "food" * 1000;

var c = Math.sqrt(-9);

In mathematics this has no
direct answer, so we can't
expect JavaScript to know
the answer either!

We don't know what this
evaluates to, but it is
certainly not a number!

If you remember high school
math, the square root of
a negative number is an
imaginary number, which
you can’t represent in
JavaScript.

NaNNaN
JavaScript uses the value NaN, more
commonly known as “Not a Number”, to
represent numeric results that, well,
can’t be represented. Take 0/0 for
instance. 0/0 evaluates to something
that just can’t be represented in a
computer, so it is represented by NaN
in JavaScript.

NaN MAY BE THE
WEIRDEST VALUE
IN THE WORLD. Not
only does it represent
all the numeric
values that can’t be

represented, it is the only value in
JavaScript that isn’t equal to itself!

You heard that right. If you compare
NaN to NaN, they aren’t equal!

you are here 4 273

types, equality, conversion and all that jazz

Dealing with NaN
Now you might think that dealing with NaN is a rare event, but if you’re working
with any kind of code that uses numbers, you’d be surprised how often it
shows up. The most common thing you’ll need to do is test for NaN, and given
everything you’ve learned about JavaScript, how to do this might seem obvious:

if (myNum == NaN) {

 myNum = 0;

}

WRONG!

Any sensible person would assume that’s how you test to see if a variable holds a
NaN value, but it doesn’t work. Why? Well, NaN isn’t equal to anything, not even
itself, so, any kind of test for equality with NaN is off the table. Instead you need
to use a special function: isNaN. Like this:

if (isNaN(myNum)) {

 myNum = 0;

}
RIGHT!

You'd think this would work, but it doesn't.

Use the isNaN function, which
returns true if the value
passed to it is not a number.

It gets even weirder
So, let’s think through this a bit more. If NaN stands for “Not a Number”, what
is it? Wouldn’t it be easier if it were named for what it is rather than what it isn’t?
What do you think it is? We can check its type for a hint:

var test11 = 0 / 0;

console.log(typeof test11);

JavaScript console

number

If your mind isn’t blown,
you should probably just
use this book for some
good kindling.

Here’s what we got.

What on earth? NaN is of type number? How can something that’s not a number
have the type number? Okay, deep breath. Think of NaN as just a poorly named
value. Someone should have called it something more like “Number that can’t
be represented” (okay, we agree the acronym isn’t quite as nice) instead of “Not
a Number”. If you think about it like that, then you can think of NaN as being a
value that is a number but can’t be represented (at least, not by a computer).

Go ahead and add this one to your JavaScript twilight zone list.

274 Chapter 7

questions about NaN and null

Q: If I pass isNaN a string, which isn’t a number, will it return
true?

A: It sure will, just as you’d expect. You can expect a variable
holding the value NaN, or any other value that isn’t an actual
number to result in isNaN returning true (and false otherwise). There
are a few caveats to this that you’ll see when we talk about type
conversion.

Q: But why isn’t NaN equal to itself?

A: If you’re deeply interested in this topic you’ll want to seek out
the IEEE floating point specification. However, the layman’s insight
into this is that just because NaN represents an unrepresentable
numeric value, does not mean that those unrepresentable numbers
are equal. For instance, take the sqrt(-1) and sqrt(-2). They are
definitely not the same, but they both produce NaN.

Q: When we divide 0/0 we get NaN, but I tried dividing 10/0
and got Infinity. Is that different from NaN?

A: Good find. The Infinity (or -Infinity) value in JavaScript
represents all numbers (to get a little technical) that exceed the upper
limit on computer floating point numbers, which is

1.7976931348623157E+10308 (or -1.7976931348623157E+10308
for -Infinity). The type of Infinity is number and you can test for it if
you suspect one of your values is getting a little large:
 if (tamale == Infinity) {
 alert("That's a big tamale!");
 }

Q: You did blow my mind with that “NaN is a number” thing.
Any other mind blowing details?

A: Funny you should ask. How about Infinity minus Infinity
equals.... wait for it........ NaN. We’ll refer you to a good
mathematician to understand that one.

Q: Just to cover every detail, did we say what the type of null
is?

A: A quick way to find out is by using the typeof operator on null. If
you do that you’ll get back the result “object”. And this makes sense
from the perspective that null is used to represent an object that isn’t
there. However, this point has been heavily debated, and the most
recent spec defines the type of null as null. You’ll find this an area
where your browser’s JavaScript implementation may not match the
spec, but, in practice, you’ll rarely need to use the type of null in code.

We’ve been looking at some rather, um, interesting, values so far in this chapter.
Now, let’s take a look at some interesting behavior. Try adding the code below
to the <script> element in a basic web page and see what you get in the console
when you load up the page. You won’t get why yet, but see if you can take a
guess about what might be going on.

if (99 == "99") {

 console.log("A number equals a string!");

} else {

 console.log("No way a number equals a string");

}

JavaScript console
> false

Write what you get here.

you are here 4 275

types, equality, conversion and all that jazz

We have a confession to make
There is an aspect of JavaScript we’ve deliberately been holding
back on. We could have told you up front, but it wouldn’t have made
as much sense as it will now.

It’s not so much that we’ve been pulling the wool over your eyes, it’s
that there is more to the story than we’ve been telling you. And what
is this topic? Here, let’s take a look:

var testMe = 99;

if (testMe == 99) {

 // good things happen

}

At some point a variable gets set, in
this case to the number 99.

And later it gets compared with a
number in a conditional test.

Straightforward enough? Sure, what could be easier? However, one
thing we’ve done at least once so far in this book, that you might
not have noticed, is something like this:

var testMe = "99";

if (testMe == 99) {

 // good things happen

}

At some point a variable gets set, in
this case to the string “99".

And later it gets compared with a
number in a conditional test.

Did we mention we're
using a string this time?

Now we have a string being
compared to a number.

So what happens when we compare a number to a string? Mass
chaos? Computer meltdown? Rioting in the streets?

No, JavaScript is smart enough to determine that 99 and “99” are
the same for all practical purposes. But what exactly is going on
behind the scenes to make this work? Let’s take a look…

 � var x = 99;
= is the assignment operator.
It is used to assign a value to
a variable.

 � x == 99
== is a comparison operator.
It is used to compare one
value with another to see if
they’re equal.

Just a quick reminder about
the difference between
assignment and equality:

276 Chapter 7

the equality operator

You’d think that understanding equality would be a simple topic. After
all, 1 == 1, “guacamole” == “guacamole” and true == true. But, clearly
there is more at work here if “99” == 99. What could be going on inside
the equality operator to make that happen?

It turns out the == operator takes the types of its operands (that is, the
two things you’re comparing) into account when it does a comparison.
You can break this down into two cases:

99 == 99

Understanding the equality operator
(otherwise known as ==)

99 == "99" When you’re comparing a number and a
string, JavaScript converts the string
to a number (if possible)...

... and then tries the comparison again.
Now, if they're equal, the expression
results in true, false otherwise.

If the two values you are comparing have the same type, like two
numbers or two strings, then the comparison works just like you would
expect: the two values are compared against each other and the result is
true if they are the same value. Easy enough.

If the two values have the same type, just compare them

This is the more interesting case. Say you have two values with different types
that you want to compare, like a number and a string. What JavaScript does is
convert the string into a number, and then compares the two values. Like this:

If the two values have different types,
try to convert them into the same type and then compare them

Okay, that makes some intuitive sense, but what are the rules here? What
if I compare a boolean to a number, or null to undefined, or some other
combination of values? How do I know what’s going to get converted into
what? And, why not convert the number into a string instead, or use some
other scheme to test their equality? Well, this is defined by a fairly simple set
of rules in the JavaScript specification that determine how the conversion
happens when we compare two values with different types. This is one of
those things you just need to internalize—once you’ve done that, you’ll be on
top of how comparisons work the rest of your JavaScript career.

Note that the conversion is
only temporary, so that the
comparison can happen.

This will also set you above
your peers, and help you nail
your next interview.

you are here 4 277

types, equality, conversion and all that jazz

99 == "vanilla"

99 == NaN

Once again, we’re comparing a number and a
string. But this time, when we try to convert
the string to a number, we fail.
When we try to convert “vanilla” to a
number, we get NaN, and NaN isn’t equal
to anything. And so the result is false.

How equality converts its operands
(sounds more dangerous than it actually is)

So what we know is that when you compare two values that have different types,
JavaScript will convert one type into another in order to compare them. If you’re
coming from another language this might seem strange given this is typically
something you’d have to code explicitly rather than have it happen automatically.
But no worries, in general, it’s a useful thing in JavaScript so long as you understand when
and how it happens. And, that’s what we’ve got to figure out now: when it happens and
how it happens.

Here we go (in four simple cases):

CASE#1: Comparing a number and a string.

If you’re comparing a string and a number the same thing happens every time: the
string is converted into a number, and the two numbers are then compared. This
doesn’t always go well, because not all strings can be converted to numbers. Let’s see
what happens in that case:

false

CASE#2: Comparing a boolean with any other type.

In this case, we convert the boolean to a number, and compare. This might seem a little
strange, but it’s easier to digest if you just remember that true converts to 1 and false converts
to 0. You also need to understand that sometimes this case requires doing more than one type
conversion. Let’s look at a few examples:

1 == true

1 == 1

We’re comparing a number and a boolean. The
true value is converted to the number 1.

And then we compare 1 to 1, which is true.

true

278 Chapter 7

comparing values

CASE#3: Comparing null and undefined.

Comparing these values evalutates to true. That might seem odd as well, but it’s the rule.
For some insight, these values both essentially represent “no value” (that is, a variable
with no value, or an object with no value), so they are considered to be equal.

undefined == null

Undefined and null are always equal.

true

"1" == true

"1" == 1

We’re comparing a string and a boolean. The
true value is converted to the number 1.

And then we compare the string “1" to 1...

true

Here’s another case; this time a boolean is compared to a string. Notice how more
steps are needed.

1 == 1 Now we use the rule from case#1 and the
string is converted into a number.

And now we can finally compare a number to
a number, and in this case, the result is true.

CASE#4: Oh, actually there is no case #4.

That’s it. You can pretty much determine the value of any equality with these rules.
That said, there are a few edge cases and caveats. One caveat is that we still need to
talk about comparing objects, which we’ll talk about in a bit. The other is around
conversions that might catch you off guard. Here’s one example:

1 == ""

1 == 0

We’re comparing a number and a string.
Use rule #1.

The empty string is converted to the
number 0. Believe it or not!

false
Ah, too bad, 1 and 0 are not the same. So
this evaluates to false.

you are here 4 279

types, equality, conversion and all that jazz

If only I could find a way to test two values for
equality without having to worry about their types
being converted. A way to just test if two values

are equal only if they have the same value and the
same type. A way to not have to worry about all these

rules and the mistakes they might cause. That would
be dreamy. But I know it’s just a fantasy...

280 Chapter 7

the strict equality operator

I’m a little
more strict about my
comparisons.

Editor's note: Make sure we

have a photo release on
 file

from Doug Crockford.

How to get strict
with equality
While we’re making confessions, here’s another one: there are not
one, but two equality operators. You’ve already been introduced to

== (equality), and the other operator is === (strict equality).

That’s right, three equals. You can use === in place of ==
anytime you want, but before you start doing that, let’s make sure
you understand how they differ.

With ==, you now know all the complex rules around how the
operands are converted (if they’re different types) when they’re
compared. With ===, the rules are even more complicated.

Just kidding, actually there is only one rule with ===:

Read that again. What that means is, if two values have the same type
we compare them. If they don’t, forget it, we’re calling it false no matter
what—no conversion, no figuring out complex rules, none of that. All
you need to remember is that === will find two values equal only if they
are the same type and the same value.

Two values are strictly equal only if they have
the same type and the same value.

For each comparison below write true or false below the
operators == and === to represent the result of the comparison:

"42" == 42

== ===

"0" == 0

"0" == false

"true" == true

true == (1 == "1")

true

Tricky!

"42" === 42

"0" === 0

"0" === false

"true" === true

true === (1 === "1")

Tricky!

you are here 4 281

types, equality, conversion and all that jazz

Q: What happens if I compare a number, like 99, to
a string, like “ninety-nine”, that can’t be converted to a
number?

A: JavaScript will try to convert “ninety-nine” to a number,
and it will fail, resulting in NaN. So the two values won’t be
equal, and the result will be false.

Q: How does JavaScript convert strings to numbers?

A: It uses an algorithm to parse the individual characters
of a string and try to turn each one of them into a number.
So if you write “34”, it will look at “3”, and see that can be
a 3, and then it will look at “4” and see that can be a 4. You
can also convert strings like “1.2” to floating point numbers—
JavaScript is smart enough to recognize a string like this can
still be a number.

Q: So, what if I try something like “true” == true?

A: That is comparing a string and a boolean, so according
to the rules, JavaScript will first convert true to 1, and then
compare “true” and 1. It will then try to convert “true” to a
number, and fail, so you’ll get false.

Q: So if there is both a == and a === operator, does
that mean we have <= and <==, and >= and >==?

A: No. There are no <== and >== operators. You can use
only <= and >=. These operators only know how to compare
strings and numbers (true <= false doesn’t really make sense),
so if you try to compare any values other than two strings
or two numbers (or a string and a number), JavaScript will
attempt to convert the types using the rules we’ve discussed.

Q: So if I write 99 <= “100” what happens?

A: Use the rules: “100” is converted to a number, and then
compared with 99. Because 99 is less than or equal to 100
(it’s less than), the result is true.

Q: Is there a !==?

A: Yes, and just like === is stricter than ==, !== is stricter
than !=. You use the same rules for !== as you do for ===,
except that you’re checking for inequality instead of equality.

Q: Do we use the same rules when we’re comparing
say, a boolean and a number with < and >, like 0 < true?

A: Yup! And in that case, true gets converted to 1, so you’ll
get true because 0 is less than 1.

Q: It makes sense for a string to be equal to another
string, but how can a string be less than or greater than
another string?

A: Good question. What does it mean to say “banana” <
“mango”? Well, with strings, you can use alphabetical order
to know if one string is less than or greater than another.
Because “banana” begins with a “b” and “mango” with an “m”,

“banana” is less than “mango” because “b” comes before “m”
in the alphabet. And “mango” is less than “melon” because,
while the first letters are the same, when we compare the
second letters, “a” comes before “e”.

This alphabetical comparison can trip you up, however; for
instance, “Mango” < “mango” is true, even though you might
think that “M” is greater than “m” because its “M” is capitalized.
The ordering of strings has to do with the ordering of the
Unicode values that are used to represent each character
in the computer (Unicode is a standard for representing
characters digitally), and that ordering might not always be
what you expect! For all the details, try googling “Unicode”.
But most of the time, the basic alphabetical ordering is all you
need to know if one string is less than or greater than another.

282 Chapter 7

fireside chat between equality and strict equality

Tonight’s talk: The equality and
strict equality operators let us
know who is boss.

Ah look who it is, Mr. Uptight.

I’m up for a count of == versus === across all
JavaScript code out in the world. You’re going to
come in way behind. It won’t even be close.

I don’t think so. I provide a valuable service. Who
doesn’t want to, say, compare user input in the form
of a string to a number every once in a while?

When you were in grade school did you have to
walk to school in the snow, every day, uphill, in both
directions? Do you always have to do things the
hard way?

The thing is, not only can I do the same
comparisons you do, I add value on top of that by
doing some nice conversions of types.

You’d rather just throw your hands up, call it false
and go home?

===

Just keep in mind that several leading JavaScript
gurus say that developers should use me, and only
me. They think you should be taken out of the
language altogether.

You know, you might be right, but folks are slowly
starting to get it, and those numbers are changing.

And with it come all the rules you have to keep in
mind to even use ==. Keep life and code simple;
use === and if you need to convert user input to a
number there are methods for that.

Very funny. There’s nothing wrong with being
strict and having clear-cut semantics around your
comparisons. Bad, unexpected things can happen if
you don’t keep all the rules in mind.

Every time I look at your rules I throw up in my
mouth a little. I mean comparing a boolean to
anything means I convert the boolean to a number?
That doesn’t seem very sensical to me.

==

you are here 4 283

types, equality, conversion and all that jazz

It’s working so far. Look at all the code out there, a
lot written by mere… well, scripters.

You mean like taking a shower after one of these
conversations with you?

Hmm. Well, ever considered just buying me out? I’d
be happy to go spend my days on the beach, kicking
back with a margarita in hand.

Arguing about == versus === gets old. I mean
there are more interesting things to do in life.

Look, here’s the thing you have to deal with: people
aren’t going to just stop using ==. Sometimes
it’s really convenient. And people can use it in an
educated way, taking advantage of it when it makes
sense. Like the user input example—why the heck
not use ==?

My new attitude is if people want to use you, great.
I’m still here when they need me, and by the way, I
still get a check every month no matter what they
do! There’s enough legacy code with == in the
world—I’m never going off payroll.

===

No, but one can get a little too lax around your
complex rules.

That’s fine but pages are getting more complex,
more sophisticated. It’s time to take on some best
practices.

No, like sticking to ===. It makes your code clearer
and removes the potential for weird edge cases in
comparisons.

I didn’t see that coming, I thought you’d defend
your position as THE equality operator until the
end. What gives?

I don’t even know how to respond.

Well like I said, you never know when something is
going to happen.

==

284 Chapter 7

thinking about equality

Great. If it wasn’t
confusing enough already, we
now have two equality operators.
Which one am I supposed to

use?

Deep breath. There’s a lot of debate around
this topic, and different experts will tell you different
things. Here’s our take: traditionally, coders have used
mostly == (equality) because, well, there wasn’t a great
awareness of the two operators and their differences.
Today, we’re more educated and for most purposes ===
(strict equality) works just fine and is in some ways the
safer route because you know what you’re getting. With

==, of course, you also know what you’re getting, but
with all the conversions it’s hard sometimes to think
through all the possibilities.

Now, there are times when == provides some nice
convenience (like when you’re comparing numbers to
strings) and of course you should feel free to use == in
those cases, especially now that, unlike many JavaScript
coders, you know exactly what == does. Now that we’ve
talked about ===, you’ll see us mostly shift gears in this
book and predominantly use ===, but we won’t get
dogmatic about it if there’s a case where == makes our
life easier and doesn’t introduce issues.

You’ll also hear developers refer to === (strict equality) as the “identity” operator.

you are here 4 285

types, equality, conversion and all that jazz

Compares values to see if they are equal. This
guy won’t even consider values that have
different types.

=

We had our descriptions for these operators all figured out, and then they
got all mixed up. Can you help us figure out who does what? Be careful,
we’re not sure if each contender matches zero, one or more descriptions.
We’ve already figured one out, which is marked below:

==

===
Assigns a value to a variable.

Compares values to see if they are equal. This
is the considerate equality operator. He’ll go
to the trouble of trying to convert your types
to see if you are really equal.

Compares object references and returns
true if they are the same and false otherwise.

====

286 Chapter 7

type conversion

Even more type conversions...
Conditional statements aren’t the only place you’re going to see type
conversion. There are a few other operators that like to convert types when
they get the chance. While these conversions are meant to be a convenience
for you, the coder, and often they are, it’s good to understand exactly where
and when they might happen. Let’s take a look.

var mini = "10" - 5;

Here the string “10” is converted to
the number 10. Then 80 is divided by
the number 10, resulting in 8.

With minus, the “10” is converted to the
number 10, so we have 10 minus 5, which is 5.

Another look at concatenation, and addition
You’ve probably figured out that when you use the + operator with numbers you
get addition, and when you use it with strings you get concatenation. But what happens
when we mix the types of +’s operands? Let’s find out.

If you try to add a number and a string, JavaScript converts the number to a string
and concatenates the two. Kind of the opposite of what it does with equality:

var addi = 3 + "4";

When we have a string added to a number,
we get concatenation, not addition.

Same here... we get “43".

The result variable is set to “34" (not 7).
var plusi = "4" + 3;

What about the other arithmetic operators?
When it comes the other arithmetic operators—like multiplication, division and subtraction—
JavaScript prefers to treat those as arithmetic operations, not string operations.

If you put the string first and then use the + operator with a number, the same thing
happens: the number is converted to a string and the two are joined by concatenation.

var multi = 3 * "4"; Here, JavaScript converts the
string “4” to the number 4, and
multiplies it by 3, resulting in 12.

var divi = 80 / "10";

you are here 4 287

types, equality, conversion and all that jazz

Q: Is + always interpreted as string concatenation when one
of the operands is a string?

A: Yes. However, because + has what is called left-to-right
associativity, if you have a situation like this:

 var order = 1 + 2 + " pizzas";

you’ll get “3 pizzas”, not "12 pizzas" because, moving left to right, 1
is added to 2 first (and both are numbers), which results in 3. Next
we add 3 and a string, so 3 is converted to a string and concatenated
with "pizza". To make sure you get the results you want, you can
always use parentheses to force an operator to be evaluated first:

 var order = (1 + 2) + " pizzas";

ensures you’ll get 3 pizzas, and

 var order = 1 + (2 + " pizzas");

ensures you’ll get 12 pizzas.

Q: Is that it? Or are there more conversions?

A: There are some other places where conversion happens. For
instance, the unary operator - (to make a negative number) will turn

-true into -1. And concatenating a boolean with a string will create a
string (like true + “ love” is “true love”). These cases are fairly rare,
and we’ve personally never needed these in practice, but now you
know they exist.

Q: So if I want JavaScript to convert a string into a number to
add it to another number, how would I do that?

A: There’s a function that does this named Number (yes, it has a
uppercase N). Use it like this:

 var num = 3 + Number("4");

This statement results in num being assigned the value 7. The
Number function takes an argument, and if possible, creates a
number from it. If the argument can’t be converted to a number,
Number returns.... wait for it..... NaN.

Time to test that conversion knowledge. For each expression below, write the result in the blank
next to it. We’ve done one for you. Check your answers at the end of the chapter before you go on.

Infinity - "1"

"42" + 42

2 + "1 1"

99 + 101

"1" - "1"

console.log("Result: " + 10/2)

3 + " bananas " + 2 + " apples"

“4242”

288 Chapter 7

object equality

One thing we haven’t really
talked about is how equality relates
to objects. For instance, what does it
mean for objects to be equal?

We’re glad you’re thinking about it. When
it comes to object equality there’s a simple answer and
there’s a long, deep answer. The simple answer tackles
the question: is this object equal to that object? That
is, if I have two variables referencing objects, do they
point to precisely the same object? We’ll walk through
that on the next page. The complex question involves
object types, and the question of how two objects
might or might not be the same type. We’ve seen that
we can create objects that look like the same type, say
two cars, but how do we know they really are? It’s an
important question, and one we’re going to tackle head
on in a later chapter.

you are here 4 289

types, equality, conversion and all that jazz

How to determine if two objects are equal
Your first question might be: are we talking about == or ===? Here’s the good
news: if you’re comparing two objects, it doesn’t matter! That is, if both operands are
objects, then you can use either == or === because they work in exactly the
same way. Here’s what happens when you test two objects for equality:

When we test equality of two object variables,
we compare the references to those objects

This reference...
... is NOT equal
to this reference.
They are two
different
references.

Two references are equal only if they reference
the same object

The only way a test for equality between two variables
containing object references returns true is when the two
references point to the same object.

Remember, variables hold references to objects, and so whenever
we compare two objects, we’re comparing object references.

if (var1 === var2) {

 // wow, these are the same object!

}

var2var1

if (var1 === var3) {

 // wow, these are the same object!

} This reference...

... is equal to this reference. They are
equal and the same object!

var3 var2var1

Not in this case!

Finally, two object
references that are equal.

Notice, it doesn’t
matter what’s in
these objects. If
the references
aren’t the same,
then the objects
aren’t equal.

290 Chapter 7

exercise in equality

Earl, from
Earl’s Autos.

function findCarInLot(car) {
 for (var i = 0; i < lot.length; i++) {
 if (car === lot[i]) {
 return i;
 }
 }
 return -1;
}
var chevy = {
 make: "Chevy",
 model: "Bel Air"
};
var taxi = {
 make: "Webville Motors",
 model: "Taxi"
};
var fiat1 = {
 make: "Fiat",
 model: "500"
};
var fiat2 = {
 make: "Fiat",
 model: "500"
};

var lot = [chevy, taxi, fiat1, fiat2];

var loc1 = findCarInLot(fiat2);
var loc2 = findCarInLot(taxi);
var loc3 = findCarInLot(chevy);
var loc4 = findCarInLot(fiat1);

Here's a little code that helps find cars in Earl’s Autos parking lot. Trace
through this code and write the values of loc1 through loc4 below.

Your answers here.

you are here 4 291

types, equality, conversion and all that jazz

var testThis;
if (testThis) {
 // do something
}

var element = document.getElementById("elementThatDoesntExist");
if (element) {
 // do something
}

if (0) {
 // do another thing
}

if ("") {
 // does code here ever get evaluated? Place your bets.
}

if (NaN) {
 // Hmm, what's NaN doing in a boolean test?
}

The truthy is out there...

Okay that’s weird, we know this variable will
be undefined in the conditional test. Does this
work? Is this legal JavaScript? (Answer: yes.)

Here the value of element is null.
What's that going to do?

We're testing 0?

Now we're doing a conditional test on an empty string. Anyone want to place bets?

Wait, now we're using NaN in a boolean condition?
What's that going to evaluate to?

That’s right, we said truthy not truth. We’ll say falsey too. What on earth
are we talking about? Well, some languages are rather precise about
true and false. JavaScript, not so much. In fact, JavaScript is kind of
loose about true and false. How is it loose? Well, there are values in
JavaScript that aren’t true or false, but that are nevertheless treated
as true or false in a conditional. We call these values truthy and falsey
precisely because they aren’t technically true or false, but they behave
like they are (again, inside a conditional).

Now here’s the secret to understanding truthy and falsey: concentrate on
knowing what is falsey, and then everything else you can consider truthy. Let’s look
at some examples of using these falsey values in a conditional:

Some people
write it “falsy.”

292 Chapter 7

truthy and falsey

if ([]) {
 // this will happen
}

var element = document.getElementById("elementThatDoesExist");
if (element) {
 // so will this
}

if (1) {
 // gonna happen
}

var string = "mercy me";
if (string) {
 // this will happen too
}

What JavaScript considers falsey
Again, the secret to learning what is truthy and what is falsey is to
learn what’s falsey, and then consider everything else truthy.

There are five falsey values in JavaScript:

undefined is falsey.

null is falsey.

0 is falsey.

The empty string is falsey.

So, every conditional test on the previous page evaluated to
false. Did we mention every other value is truthy (except for
false, of course)? Here are some examples of truthy values:

To remember which values
are truthy and which
are falsey, just memorize
the five falsey values—
undefined, null, 0, "” and
NaN—and remember that
everything else is truthy.

This is an array. It's not undefined, null,
zero, “” or NaN. It has to be true!

This time we have an actual element object.
That's not falsy either, so it's truthy.

Only the number 0 is falsey, all others are truthy.

Only the empty string is falsey,
all other strings are truthy.

NaN is falsey.

Except false, which is... well, false.

you are here 4 293

types, equality, conversion and all that jazz

Time for a quick lie detector test. Figure out how many lies the perp tells, and
whether the perp is guilty as charged, by determining which values are truthy
and which values are falsey. Check your answer at the end of the chapter before
you go on. And of course feel free to try these out in the browser yourself.

function lieDetectorTest() {
 var lies = 0;

 var stolenDiamond = { };
 if (stolenDiamond) {
 console.log("You stole the diamond");
 lies++;
 }
 var car = {
 keysInPocket: null
 };
 if (car.keysInPocket) {
 console.log("Uh oh, guess you stole the car!");
 lies++;
 }
 if (car.emptyGasTank) {
 console.log("You drove the car after you stole it!");
 lies++;
 }
 var foundYouAtTheCrimeScene = [];
 if (foundYouAtTheCrimeScene) {
 console.log("A sure sign of guilt");
 lies++;
 }
 if (foundYouAtTheCrimeScene[0]) {
 console.log("Caught with a stolen item!");
 lies++;
 }
 var yourName = " ";
 if (yourName) {
 console.log("Guess you lied about your name");
 lies++;
 }
 return lies;
}
var numberOfLies = lieDetectorTest();
console.log("You told " + numberOfLies + " lies!");
if (numberOfLies >= 3) {
 console.log("Guilty as charged");
}

A string with one space.

294 Chapter 7

all about strings

The Secret Life of Strings
Types always belong to one of two camps: they’re either a primitive type or an
object. Primitives live out fairly simple lives, while objects keep state and have
behavior (or said another way, have properties and methods). Right?

Well, actually, while all that is true, it’s not the whole story. As it turns out,
strings are a little more mysterious. Check out this code:

What do you think this code does? Do you see anything
odd about this code, especially given what we know
about primitive types?

var text = "YOU SHOULD NEVER SHOUT WHEN TYPING";

var presentableText = text.toLowerCase();

if (presentableText.length > 0) {

 alert(presentableText);

}

 var emot = "XOxxOO";

 var hugs = 0;

 var kisses = 0;

 emot = emot.trim();

 emot = emot.toUpperCase();

 for(var i = 0; i < emot.length ; i++) {

 if (emot.charAt(i) === "X") {

 hugs++;

 } else if (emot.charAt(i) == "O") {

 kisses++;

 }

 }

This looks like a normal, primitive string.

Wait a sec, calling a method on a string?

More methods?

And a string with a property?

you are here 4 295

types, equality, conversion and all that jazz

How a string can look like a primitive
and an object
How does a string masquerade as both a primitive and an object? Because
JavaScript supports both. That is, with JavaScript you can create a string that
is a primitive, and you can also create one that is an object (which supports
lots of useful string manipulation methods). Now, we’ve never talked about
how to create a string that is an object, and in most cases you don’t need to
explicitly do it yourself, because the JavaScript interpreter will create string
objects for you, as needed.

Now, where and why might it do that? Let’s look at the life of a string:

 var name = "Jenny";
 var phone = "867-5309";
 var fact = "This is a prime number";

 var songName = phone + "/" + name;

 var index = phone.indexOf("-");
 if (fact.substring(10, 15) === "prime") {
 alert(fact);
 }

Here we've created three
primitive strings and
assigned them to variables.

And here we're just
concatenating some
strings together to create
another primitive string.

Here we're using a method. This
is where, behind the scenes,
JavaScript temporarily converts
phone to a string object.

Same here, the fact string
is temporarily converted to
an object to support the
substring method.

And, we're using
fact again, but this
time there is no
need for an object,
so it's back to being
a boring primitive.

BORING PRIMITIVE

OBJECT WITH SUPER POWERS

296 Chapter 7

questions about strings

This seems very
confusing. My string is being

converted back and forth between
a primitive and object? How am I
supposed to keep track of all this?

You don’t need to. In general you can just think of your
strings as objects that have lots of great methods to help you
manipulate the text in your strings. JavaScript will take care
of all the details. So, look at it this way: you now have a better
understanding of what is under the covers of JavaScript, but in
your day to day coding most developers just rely on JavaScript to
do the right thing (and it does).

Q: Just making sure, do I ever have
to keep track of where my string is a
primitive and where it’s an object?

A: Most of the time, no. The JavaScript
interpreter will handle all the conversion for
you. You just write your code, assuming a
string supports the object properties and
methods, and things will work as expected.

Q: Why does JavaScript support a
string as both a primitive and an object?

A: Think about it this way: you get the
efficiency of the simple string primitive
type as long as you are doing basic string
operations like comparison, concatenation,
writing string to the DOM, and so on. But
if you need to do more sophisticated string
processing, then you have the string object
quickly at your disposal.

Q: Given an arbitary string, how do I
know if it is an object or primitive?

A: A string is always a primitive unless
you create it in a special way using an
object constructor. We’ll talk about object
constructors later. And you can always use
the typeof operator on your variable to see if
it is of type string or object.

Q: Can other primitives act like
objects?

A: Yes, numbers and booleans can also
act like objects at times. However, neither of
these has nearly as many useful properties
as strings do, so you won’t find you’ll use
this feature nearly as often as you do with
strings. And remember, this all happens for
you behind the scenes, so you don’t really
have to think about it much. Just use a
property if you need to and let JavaScript
handle the temporary conversion for you.

Q: How can I know all the methods
and properties that are available for
String objects?

A: That’s where a good reference comes
in handy. There are lots of online references
that are helpful, and if you want a book,
JavaScript: The Definitive Guide has a
reference guide with information about every
string property and method in JavaScript.
Google works pretty well too.

you are here 4 297

types, equality, conversion and all that jazz

Given that we’re in the middle of talking about strings and you’ve
just discovered that strings also support methods, let’s take a little
break from talking about weirdo types and look at a few of the
more common string methods you might want to use. A few string
methods get used over and over, and it is highly worth your time to
get to know them. So on with the tour.

A five-minute tour of string
methods (and properties)

A little pep talk: we could pull you aside

and write an entire chapter on every
method and property that strings
support. Not only would that make this

book 40 lbs and 2000 pages long, but

at this point, you really don’t need
 it—

you already get the basics of methods

and objects, and all you need is a
good

reference if you really want to dive
into the details of string processi

ng.

the length property

the charAt method

The length property holds the number of characters in the string. It’s quite handy

for iterating through the characters of the string.

The charAt method takes an integer number between zero and the length of the string

(minus one), and returns a string containing the single character at that position of

the string. Think of the string a bit like an array, with each character at an index of the

string, with the indices starting at 0 (just like an array). If you give it an index that is

greater than or equal to the length of the string, it returns the empty string.

 var input = "jenny@wickedlysmart.com
";

 for(var i = 0; i < input.length; i++
) {

 if (input.charAt(i) === "@") {

 console.log("There's an @ sign at index
 " + i);

 }

 }

Note that JavaScript doesn’t have a character

type. So characters are returned as ne
w strings

containing one character.

We use the length property
to iterate over each
character in the string.

And the charAt method to get
the character at a particular
index in the string.

a

charAt(0)
is “a”.

charAt(5)
is “f”.

b c d e f

JavaScript console

There's an @ sign at index 5

298 Chapter 7

the indexOf method

This method takes a string as an argument and returns the index of the first

character of the first occurrence of that argument in the string.

the indexOf method

var phrase = "the cat in the
hat";

var index = phrase.indexOf("c
at");

console.log("there's a cat si
tting at index " + index);

JavaScript console

there's a cat sitting at index 4

Here's the string we're going to

call indexOf on.

And our goal is to find the first
occurence of “cat" in phrase.

The index of the first cat is returned.

index = phrase.indexOf("the",
 5);

console.log("there's a the si
tting at index " + index);

You can also add a second argument, which is

the starting index for the search
.

JavaScript console

there's a the sitting at index 11

index = phrase.indexOf("dog")
;

console.log("there's a dog si
tting at index " + index);

JavaScript console

there's a dog sitting at index -1Note if the string can't be found, then -1 is
returned as the index.

Because we're starting the search at index 5,
we're skipping the first “the" and finding the
second “the” at index 11.

you are here 4 299

types, equality, conversion and all that jazz

the substring method
Give the substring method two indices, and it will extract and return the string contained within them.

var data = "name|phone|address";
var val = data.substring(5, 10);
console.log("Substring is " + val);

You can omit the second index and substring will extract a string that starts at the first index and then continues until the end of the original string.

JavaScript console
Substring is phone

Here's the string we're going to
call substring on.
We'd like the string from index
5 and up to (but not including)
10 returned.

We get back a new string with the characters from index 5 to 10.

val = data.substring(5);
console.log("Substring is now " + val);

JavaScript console
Substring is now phone|address

the split method
The split method takes a character that acts as a delimiter, and breaks the string into

parts based on the delimiter.

var data = "name|phone|address";

var vals = data.split("|");

console.log("Split array is ", v
als);

JavaScript console

Split array is ["name", "phone", "address"]

Split uses the delimiter to

break the original strin
g into

pieces, which are returned in

an array.

Notice here we’re passing two
arguments to console.log separated
by a comma. This way, the vals array
doesn’t get converted to a string
before it’s displayed in the console.

300 Chapter 7

string methods

There’s really no end to learning all
the things you can do with strings.

Here are a few more methods
available to you. Just get a

passing familiarity right now, and
when you really need them you

can look up the details...

subs
trin

g

match

toU
ppe

rCa
se

replace

conc
at

slice

lastIndexOf

trim

toLowerCase

String
Soup

Returns a string with
every uppercase character
changed to lowercase.

Returns a new string that has part of the original string removed.

Returns a portion
of a string.

Removes whitespace from

around the string. H
andy

when processing user
input.

Searches for matches in a string using regular expressions.
Returns a string with
every lowercase character
changed to uppercase.

Joins strings together.

Finds substrings and replaces
them with another string.

Just like indexOf, but
finds the last, not the
first, occurrence.

you are here 4 301

types, equality, conversion and all that jazz

Take a phone number of the form:

and write code to accept or reject it.

To be accepted the number should

have seven digits, 0 through 9, with

a dash in the middle.

“123-4567”

function validate(phoneNumber) {
 if (phoneNumber.length !== 8) {
 return false;
 }
 for (var i = 0; i < phoneNumber.length; i++) {
 if (i === 3) {
 if (phoneNumber.charAt(i) !== '-') {
 return false;
 }
 } else if (isNaN(phoneNumber.charAt(i))) {
 return false;
 }
 }
 return true;
}

Larry uses the length property of
the string object to see how many
characters it has.

He uses the charAt method to examine
each character of the string.
First, he makes sure
character three has a dash.

Chair Wars
(or How Really Knowing Types Can Change Your Life)

Once upon a time in a software shop, two programmers were given
the same spec and told to “build it.” The Really Annoying Project
Manager forced the two coders to compete, by promising that
whoever delivers first gets one of those cool Aeron™ chairs all the
Silicon Valley guys have. Brad, the hardcore hacker scripter, and
Larry, the college grad, both knew this would be a piece of cake.

Larry, sitting in his cube, thought to himself, “What are the things
this code has to do? It needs to make sure the string is long enough,
it needs to make sure the middle character is a dash, and it needs to
make sure every other character is a number. I can use the string’s
length property and I know how to access its characters using the
charAt method.”

Brad, meanwhile, kicked back at the cafe and thought to himself,
“What are the things this code has to do?” He first thought, “A string
is an object, and there are lots of methods I can use to help validate
the phone number. I’ll brush up on those and get this implemented
quickly. After all, an object is an object.” Read on to see how Brad
and Larry built their programs, and for the answer to your burning
question: who got the Aeron?

The spec

The chair

Larry set about writing code based on the string methods. He wrote
the code in no time:

In Larry’s cube

Then he makes sure each character
zero through two and four
through six has a number in it.

302 Chapter 7

using and manipulating strings

Brad wrote code to check for two numbers and a dash:

function validate(phoneNumber) {

 if (phoneNumber.length !== 8) {

 return false;

 }

 var first = phoneNumber.substring(0,3);

 var second = phoneNumber.substring(4);

 if (phoneNumber.charAt(3) !== "-" || isNaN(first) || isNaN(second)) {

 return false;

 }

 return true;

}

Brad starts just like Larry...

But he uses his knowledge of the
string methods. He uses the substring method to

create a string containing three
characters from zero up to
character three.

And again to start at character index four
up to the end of the string.

Then he tests all the
conditions for being a
correct phone number
in one conditional.

.Take a phone number of the form:

and write code to accept or reject it.

To be accepted the number should

have seven digits, 0 through 9, with

an optional dash in the middle.

“123-4567”

In Brad’s cube

What got added to the spec

But wait! There’s been a spec change.

“Okay, technically you were first, Larry, because Brad was looking up how to
use all those methods,” said the Manager, “but we have to add just one tiny
thing to the spec. It’ll be no problem for crack programmers like you two.”

“If I had a dime for every time I’ve heard that one”, thought Larry, knowing
that spec-change-no-problem was a fantasy. “And yet Brad looks strangely
serene. What’s up with that?” Still, Larry held tight to his core belief that
Brad’s fancy way, while cute, was just showing off. And that he’d win again
in this next round and produce the code first.

And interestingly, knowing it or not, he’s

depending on some type conversions here to

convert a string to a number, and then making

sure it’s a number with isNaN. Clever!

Wait, can you think of any
bugs Brad might have
introduced with his use of
isNaN?

you are here 4 303

types, equality, conversion and all that jazz

Back in Larry’s cube

Brad smiled, sipped his margarita and quickly made his changes. He
simply got the second part of the number using the length of the phone
number minus four as the starting point for the substring, instead of
hardcoding the starting point at a position that assumes a dash. That
almost did it, but he did need to rewrite the test for the dash because it
applies only when the phone number has a length of eight.

At Brad’s laptop at the beach

function validate(phoneNumber) {
 if (phoneNumber.length > 8 ||
 phoneNumber.length < 7) {
 return false;
 }
 for (var i = 0; i < phoneNumber.length; i++) {
 if (i === 3) {
 if (phoneNumber.length === 8 &&
 phoneNumber.charAt(i) !== '-') {
 return false;
 } else if (phoneNumber.length === 7 &&
 isNaN(phoneNumber.charAt(i))) {
 return false;
 }
 } else if (isNaN(phoneNumber.charAt(i))) {
 return false;
 }
 }
 return true;
}

Larry had to make a
few additions to his logic.
Not a lot of code, but
it's getting a bit hard
to decipher.

Larry thought he could use most of his existing code; he just had to
work these edge cases of the missing dash in the number. Either the
number would be only seven digits, or it would be eight digits with a
dash in the third position. Quickly Larry coded the additions (which
took a little testing to get right):

304 Chapter 7

thinking about strings

But the smirk on Larry’s face melted when the Really
Annoying Project Manager said, “Brad, your code is
very readable and maintainable. Good job.”

But Larry shouldn’t be too worried, because, as we
know, there is more than just code beauty at work. This
code still needs to get through QA, and we’re not quite
sure Brad’s code works in all cases. What about you?
Who do you think deserves the chair?

The suspense is killing me.
Who got the chair?

Amy from the second floor.

(Unbeknownst to all, the Project
Manager had given the spec to three
programmers.)

function validate(phoneNumber) {

 return phoneNumber.match(/^\d{3}-?\d{4}$/);

}

Wow, a one-liner! Check out how
this works in the appendix!

Larry snuck in just ahead of Brad.

function validate(phoneNumber) {

 if (phoneNumber.length > 8 ||
 phoneNumber.length < 7) {
 return false;
 }
 var first = phoneNumber.substring(0,3);

 var second = phoneNumber.substring(phoneNumber.length - 4);

 if (isNaN(first) || isNaN(second)) {

 return false;

 }

 if (phoneNumber.length === 8) {

 return (phoneNumber.charAt(3) === "-");

 }

 return true;

}

Now Brad’s getting the second number
using the total length of the phone
number to get the starting point.

And he's validating the dash only
if the number is eight characters.

Err, we think Brad still has a bug.
Can you find it?

Here's Amy's code.

About the same number of changes
as Larry, but Brad’s code is still
easier to read.

How would you rewrite Brad’s code
to use the split method instead?

Here we’re returning the result
of evaluating the conditional,
which will be true or false.

you are here 4 305

types, equality, conversion and all that jazz

IN THE LABORATORY, AGAIN
The lab crew continues to probe JavaScript using the typeof
operator and they’re uncovering some more interesting things
deep within the language. In the process, they’ve discovered a
new operator, instanceof. With this one, they’re truly on the cutting
edge. Put your lab coat and safety goggles back on and see if you
can help decipher this JavaScript and the results. Warning: this is
definitely going to be the weirdest code you’ve seen so far.

function Duck(sound) {
 this.sound = sound;
 this.quack = function() {console.log(this.sound);}
}

var toy = new Duck("quack quack");

toy.quack();

console.log(typeof toy);
console.log(toy instanceof Duck);

JavaScript console

Here's the code. Read it, run it, alter
it, massage it, see what it does...

Put your results here. Are
there any surprises?

How strange. Doesn't this look a bit like
a mix of a function and an object?

Hmm “new". We've haven't seen that before. But
we're guessing we should read this as, create a new
Duck and assign it to the toy variable.

If it looks like an object, and walks like an object...
let's test it.

Okay, and here is instanceof...

Be sure to check your output w
ith the answers at

the end of the chapter. But just what does this

all mean? Ah, we’ll be getting to all that in ju
st a

couple of chapters. And, in case you didn’t notice,

you are well on your way to being a pretty darn

advanced JavaScript coder. This is serious stuff!

306 Chapter 7

chapter summary

 � There are two groups of types in JavaScript:
primitives and objects. Any value that isn’t a
primitive type is an object.

 � The primitives are: numbers, strings,
booleans, null and undefined. Everything else
is an object.

 � undefined means that a variable (or property
or array item) hasn’t yet been initialized to a
value.

 � null means “no object”.

 � “NaN” stands for “Not a Number”, although
a better way to think of NaN is as a number
that can’t be represented in JavaScript. The
type of NaN is number.

 � NaN never equals any other value, including
itself, so to test for NaN use the function
isNaN.

 � Test two values for equality using == or ===.

 � If two operands have different types, the
equality operator (==) will try to convert one
of the operands into another type before
testing for equality.

 � If two operands have different types, the strict
equality operator (===) returns false.

 � You can use === if you want to be sure
no type conversion happens, however,
sometimes the type conversion of == can
come in handy.

 � Type conversion is also used with other
operators, like the arithmetic operators and
string concatenation.

 � JavaScript has five falsey values: undefined,
null, 0, “” (the empty string) and NaN. (False
is also falsey of course.) All other values are
truthy.

 � Strings sometimes behave like objects. If
you use a property or method on a primitive
string, JavaScript will convert the string to
an object temporarily, use the property, and
then convert it back to a primitive string. This
happens behind the scenes so you don’t
have to think about it.

 � The string has many methods that are useful
for string manipulation.

 � Two objects are equal only if the variables
containing the object references point to the
same object.

you are here 4 307

types, equality, conversion and all that jazz

JavaScript cross
You’re really expanding your JavaScript skills. Do a crossword
to help it all sink in. All the answers are from this chaper.

1 2 3

4

5 6

7

8 9 10 11

12 13 14

15

16 17

18

Across
2. The only value in JavaScript that doesn't

equal anything.
5. The type of Infinity is ________.
7. There are _______ falsey values in

JavaScript.
8. Who got the Aeron?

10. Two variables containing object references
are equal only if they ______ the same
object.

12. The value returned when you're expecting an
object, and that object doesn't exist.

13. The ______ method is a string method that
returns an array.

16. It's always 67 degrees in _______,
Missouri.

17. The type of null in the JavaScript
specification.

Down
1. The _________ operator can be used to get

the type of a value.
2. The weirdest value in the world.
3. Your Fiat is parked at _____ Autos.
4. Sometimes strings masquerade as

_________.
6. The value of a property that doesn't exist.
9. There are lots of handy string ________

you can use.
11. The _______ operator tests two values to

see if they're equal, after trying to convert
the operands to the same type.

14. null == undefined
15. To find a specific character at an index in a

string, use the ______ method.

ACROSS
2. The only value in JavaScript that doesn’t equal
anything.
5. The type of Infinity is ________.
7. There are _______ falsey values in JavaScript.
8. Who got the Aeron?
10. Two variables containing object references
are equal only if they ______ the same
object.
12. The value returned when you’re expecting an
object, and that object doesn’t exist.

13. The ______ method is a string method that
returns an array.
16. It’s always 67 degrees in _______,
Missouri.
17. The type of null in the JavaScript specification.
18. The ______ equality operator returns true only if the
operands have the same type and the same value.

DOWN
1. The _________ operator can be used to get the type
of a value.
2. The weirdest value in the world.
3. Your Fiat is parked at _____ Autos.
4. Sometimes strings masquerade as
_________.
6. The value of a property that doesn’t exist.
9. There are lots of handy string ________
you can use.
11. The _______ operator tests two values to
see if they’re equal, after trying to convert
the operands to the same type.
14. null == undefined
15. To find a specific character at an index in a
string, use the ______ method.

308 Chapter 7

exercise solutions

Who am I?

I get returned from a function when there

is no return statement.

I’m the value of a variable when I haven’t

been assigned a value.

I’m the value of an array item that doesn’t

exist in a sparse array.

I’m the value of a property that doesn’t

exist.

I’m the value of a property that’s been

deleted.

zero

empty object

null

undefined

NaN

infinity

area 51

...---...

{}

[]

A bunch of JavaScript values and party crashers, in full costume, are
playing a party game, “Who am I?” They give you a clue, and you try to
guess who they are, based on what they say. Assume they always tell
the truth about themselves. Fill in the blank next to each sentence with
the name of one attendee. We’ve already guessed one of them.

Here’s our solution:

Tonight’s
attendees:

you are here 4 309

types, equality, conversion and all that jazz

IN THE LABORATORY
In the laboratory we like to take things apart, look under the hood,
poke and prod, hook up our diagnostic tools and check out what
is really going on. Today, we’re investigating JavaScript’s type
system and we’ve found a little diagnostic tool called typeof to
examine variables. Put your lab coat and safety goggles on, and
come on in and join us.

The typeof operator is built into JavaScript. You can use it to
probe the type of its operand (the thing you use it to operate on).
Here’s an example:

var subject = "Just a string";

var probe = typeof subject;

console.log(probe); JavaScript console
string

The typeof operator takes an
operand, and evaluates to the
type of the operand.

The type here is “string". Note
that typeof uses strings to
represent types, like “string",

“boolean", “number", “object",
“undefined" and so on.

Now it’s your turn. Collect the data for the
following experiments:
var test1 = "abcdef";
var test2 = 123;
var test3 = true;
var test4 = {};
var test5 = [];
var test6;
var test7 = {"abcdef": 123};
var test8 = ["abcdef", 123];
function test9(){return "abcdef"};

console.log(typeof test1);
console.log(typeof test2);

console.log(typeof test3);
console.log(typeof test4);
console.log(typeof test5);
console.log(typeof test6);
console.log(typeof test7);
console.log(typeof test8);
console.log(typeof test9);

JavaScript console

Here's the test data,
and the tests.

SOLUTION

string

number

boolean

object

object

undefined

object

object

function

Here are our results.

310 Chapter 7

exercise solutions

BACK IN THE LABORATORY
Oops, we forgot null in our test data. Here’s the missing test case:

var test10 = null;

console.log(typeof test10);

JavaScript console

Here’s our result.

We’ve been looking at some rather, um, interesting, values so far in this chapter.
Now, let’s take a look at some interesting behavior. Try adding the code below
to the <script> element in a basic web page and see what you get in the console
when you load up the page. You won’t get why yet, but see if you can take a
guess about what might be going on.

if (99 == "99") {

 console.log("A number equals a string!");

} else {

 console.log("No way a number equals a string");

}

JavaScript console
A number equals a string!

Here’s what we got.

object

SOLUTION

you are here 4 311

types, equality, conversion and all that jazz

Compares values to see if they are equal. This
guy won’t even consider values that have
different types.

=

We had our descriptions for these operators all figured out, and then they got all mixed up. Can
you help us figure out who does what? Be careful, we’re not sure if each contender matches zero,
one or more descriptions. Here’s our solution:

==

===
Assigns a value to a variable.

Compares values to see if they are equal. This
is the considerate equality operator. He’ll go
to the trouble of trying to convert your types
to see if you are really equal.

Compares object references and returns
true if they are the same and false otherwise.

====

For each comparison below write true or false below the
operators == or === to represent the result of the comparison:

Both these
work if you're
comparing two
objects!

There is
no such
operator.

SOlUTion

"42" == 42

== ===

"0" == 0

"0" == false

"true" == true

true == (1 == "1")

true

Tricky!

"42" === 42

"0" === 0

"0" === false

"true" === true

true === (1 === "1")

true

true

false

true false

false

false

false

If you replace both == with
===, then the result is false.

false

312 Chapter 7

exercise solutions

For each expression below, write the result in the blank next to it. We’ve done one
for you. Here’s our solution.

Infinity - "1"

"42" + 42

2 + "1 1"

99 + 101

"1" - "1"

console.log("Result: " + 10/2)

3 + " bananas " + 2 + " apples"

Infinity

“4242”

“21 1”

200

0

“Result: 5”

“3 bananas 2 apples”

“1” is converted to 1, and
Infinity - 1 is Infinity.

Both strings are
converted to 1, and
1-1 is 0.
10/2 happens first,
and the result is
concatenated to the
string “Result: ”

Each + is concatenation because
for both, one operand is a string.

you are here 4 313

types, equality, conversion and all that jazz

Time for a quick lie detector test. Figure out how many lies the perp tells, and
whether the perp is guilty as charged, by determining which values are truthy
and which values are falsey. Here’s our solution. Did you try these out in the
browser yourself?

function lieDetectorTest() {
 var lies = 0;

 var stolenDiamond = { };
 if (stolenDiamond) {
 console.log("You stole the diamond");
 lies++;
 }
 var car = {
 keysInPocket: null
 };
 if (car.keysInPocket) {
 console.log("Uh oh, guess you stole the car!");
 lies++;
 }
 if (car.emptyGasTank) {
 console.log("You drove the car after you stole it!");
 lies++;
 }
 var foundYouAtTheCrimeScene = [];
 if (foundYouAtTheCrimeScene) {
 console.log("A sure sign of guilt");
 lies++;
 }
 if (foundYouAtTheCrimeScene[0]) {
 console.log("Caught with a stolen item!");
 lies++;
 }
 var yourName = " ";
 if (yourName) {
 console.log("Guess you lied about your name");
 lies++;
 }
 return lies;
}
var numberOfLies = lieDetectorTest();
console.log("You told " + numberOfLies + " lies!");
if (numberOfLies >= 3) {
 console.log("Guilty as charged");
}

A string with one space.

JavaScript console
You stole the diamond
A sure sign of guilt
Guess you lied about your name
You told 3 lies!
Guilty as charged

Any object is truthy,
even an empty one.

This perp didn't steal the car because
the value of the keysInPocket property

is null, which is falsey.

And the perp didn't drive
the car either, because the
emptyGasTank property is
undefined, which is falsey.

But [] (an empty array) is truthy, so the perp was caught on the scene.

There is no item in the array, so
the array item at 0 is undefined,
which is falsey. Hmm, the perp must
have hidden the stash already.

Any non-empty string is truthy,
even if it just has one space!

The number of lies is 3 so we think the perp is guilty.

314 Chapter 7

exercise solutions

Earl, from
Earl’s Autos.

function findCarInLot(car) {
 for (var i = 0; i < lot.length; i++) {
 if (car === lot[i]) {
 return i;
 }
 }
 return -1;
}
var chevy = {
 make: "Chevy",
 model: "Bel Air"
};
var taxi = {
 make: "Webville Motors",
 model: "Taxi"
};
var fiat1 = {
 make: "Fiat",
 model: "500"
};
var fiat2 = {
 make: "Fiat",
 model: "500"
};

var lot = [chevy, taxi, fiat1, fiat2];

var loc1 = findCarInLot(fiat2);
var loc2 = findCarInLot(taxi);
var loc3 = findCarInLot(chevy);
var loc4 = findCarInLot(fiat1);

Here's a little code that helps find cars in Earl’s Used Autos parking lot.
Trace through this code and write the values of loc1 through loc4 below.

Here are our answers.

0

3
1

2

you are here 4 315

types, equality, conversion and all that jazz

IN THE LABORATORY, AGAIN
The lab crew continues to probe JavaScript using the typeof
operator and they’re uncovering some more interesting things
deep within the language. In the process, they’ve discovered a
new operator, instanceof. With this one, they’re truly on the cutting
edge. Put your lab coat and safety goggles back on and see if you
can help decipher this JavaScript and the results. Warning: this is
definitely going to be the weirdest code you’ve seen so far.

function Duck(sound) {
 this.sound = sound;
 this.quack = function() {console.log(this.sound);}
}

var toy = new Duck("quack quack");

toy.quack();

console.log(typeof toy);
console.log(toy instanceof Duck);

JavaScript console

Here's the code. Read it, run it, alter
it, massage it, see what it does...

Here are our results.

How strange. Doesn't this look a bit like
a mix of a function and an object?

Hmm “new". We've haven't seen that before. But
we're guessing we should read this as, create a new
Duck and assign it to the toy variable.

If it looks like an object, and walks like an object...
let's test it.

Okay, and here is instanceof...

SOLUTION

quack quack

object

true

The toy acts like an
object... we can call
its method.

And the type is object.

But it is an “instanceof”
a Duck, whatever that
means... Hmm.

Just what does this all mean? Ah, we’ll be getting

to all that in just a few chapters. And, in case you

didn’t notice, you are well on your way to being a

pretty darn advanced JavaScript coder. This is

serious stuff!

316 Chapter 7

exercise solutions

JavaScript cross Solution
You’re really expanding your JavaScript skills. Do a
crossword to help it all sink in. All the answers are
from this chaper. Here’s our solution.

T
1

N
2

A N E
3

Y A O
4

A
P N

5
U
6

M B E R
F
7

I V E N J L
O D E S

A
8

M
9

Y R
10

E
11

F E R E N C E
E Q F T
T N

12
U L L I S

13
P L I T

14

H C
15

A N R
O H B

16
L A I N E N

17
U L L

D A I D E
S
18

T R I C T
A Y
T

Across
2. The only value in JavaScript that doesn't

equal anything. [NAN]
5. The type of Infinity is ________.

[NUMBER]
7. There are _______ falsey values in

JavaScript. [FIVE]
8. Who got the Aeron? [AMY]

10. Two variables containing object references
are equal only if they ______ the same
object. [REFERENCE]

12. The value returned when you're expecting an
object, and that object doesn't exist.
[NULL]

13. The ______ method is a string method that
returns an array. [SPLIT]

16. It's always 67 degrees in _______,
Missouri. [BLAINE]

Down
1. The _________ operator can be used to get

the type of a value. [TYPEOF]
2. The weirdest value in the world. [NAN]
3. Your Fiat is parked at _____ Autos. [EARLS]
4. Sometimes strings masquerade as

_________. [OBJECTS]
6. The value of a property that doesn't exist.

[UNDEFINED]
9. There are lots of handy string ________

you can use. [METHODS]
11. The _______ operator tests two values to

see if they're equal, after trying to convert
the operands to the same type. [EQUALITY]

14. null == undefined [TRUE]
15. To find a specific character at an index in a

string, use the ______ method. [CHARAT]

this is a new chapter 317

Building an app

8 bringing it all together

Put on your toolbelt. That is, the toolbelt with all your new coding

skills, your knowledge of the DOM, and even some HTML & CSS. We’re

going to bring everything together in this chapter to create our first true web

application. No more silly toy games with one battleship and a single row of

hiding places. In this chapter we’re building the entire experience: a nice big

game board, multiple ships and user input right in the web page. We’re going

to create the page structure for the game with HTML, visually style the game

with CSS, and write JavaScript to code the game’s behavior. Get ready: this

is an all out, pedal to the metal development chapter where we’re going to lay

down some serious code.

I love how you’ve
brought all the ingredients

together to create
something truly tasty.

Hey! Eyes up! The
poundcake’s up here.

318 Chapter 8

building the real battleship game

Sure, you can feel good because back in Chapter 2 you built a nice little battleship game
from scratch, but let’s admit it: that was a bit of a toy game—it worked, it was playable,
but it wasn’t exactly the game you’d impress your friends with, or use to raise your first
round of venture capital. To really impress, you’ll need a visual game board, snazzy
battleship graphics, and a way for players to enter their moves right in the game (rather
than a generic browser dialog box). You’ll also want to improve the previous version by
supporting all three ships.

In other words, you’ll want to create something like this:

This time, let’s build a REAL Battleship game

Highly visual game
board right in the
web page, complete
with a grid.

Enter your guesses
right in the page.

Your hits and
misses are placed
right on the
game board as
you take your
shots.

And now we’ve
got all three ships
ducking your shots.

Forget JavaScript for a minute... look at the Battleship mockup above.
If you focus on the structure and visual represention of the page, how
would you create it using HTML and CSS?

you are here 4 319

bringing it all together

Stepping back... to HTML and CSS
To create a modern, interactive web page, or app, you need to
work with three technologies: HTML, CSS and JavaScript. You
already know the mantra “HTML is for structure, CSS is for
style and JavaScript is for behavior.” But rather than just stating
it, in this chapter we’re going to fully embody it. And we’re
going to start with the HTML and CSS first.

Our first goal is going to be to reproduce the look of the game
board on the previous page. But not just reproduce it; we need
to implement the game board so it has a structure we can use
in JavaScript to take player input and place hits, misses and
messages on the page.

To pull that off we’re going to do things like use an image in the
background to give us the slick grid over a radar look, and then
we’ll lay a more functional HTML table over that so we can
place things (like ships) on top of it. We’ll also use an HTML
form to get the player input.

board.jpg

ship.png

miss.png

INVENTORY includes...

This toolkit contains three images,
“board.jpg”, which is the main
background board for the game
including the grid; “ship.png”, which
is a small ship for placement on
the board—notice that it is a PNG
image with transparency, so it will
lay right on top of the background—
and finally we have “miss.png”,
which is also meant to be placed on
the board. True to the original game,
when we hit a ship we place a ship
in the corresponding cell, and when
we miss we place a miss graphic
there.

GET YOUR
Battleship Toolkit

And then add an
HTML table that
overlays the grid.

We’ll place an
image in the
background of
the page that
depicts the grid
of the game.

Download everything you n
eed for the

game at http://wickedlysmart.com/hfjs

Here’s a toolkit to get you started on
this new version of Battleship.

Then we can place the ship or MISS
graphic in the table cells as needed.

So, let’s build this game. We’re going to take a step back and
spend a few pages on the crucial HTML and CSS, but once
we have that in place, we’ll be ready for the JavaScript.

320 Chapter 8

planning the html for the game

1 First we’ll concentrate on the background
of the game, which includes setting the
background image to black and placing the
radar grid image in the page.

2 Next we’ll create an HTML table and lay
it on top of the background image. Each
cell in the table will represent a board
cell in the game.

3 Then we’ll add an HTML form element
where players can enter their guesses,
like “A4”. We’ll also add an area to
display messages, like “You sank my
battleship!”

Creating the HTML page: the Big Picture
Here’s the plan of attack for creating the Battleship HTML page:

Finally, we’ll figure out how to use
the table to place the images of a
battleship (for a hit) and a MISS (for a
miss) into the board.

4

An HTML form
for player input.

We’re placing an image in
the background to give
the game its cool, green
phosphorus radar feel.

An HTML table
on top of the
background creates
a game board for
the game to play
out in.

We’ll use these
images and place
them into the
table as needed.

Step 1: The Basic HTML
Let’s get started! First we need an HTML
page. We’re going to start by creating a simple
HTML5-compliant page; we’ll also add some
styling for the background image. In the page
we’re going to place a <body> element that
contains a single <div> element. This <div>
element is going to hold the game grid.

Go ahead and check out the next page that
contains our starter HTML and CSS.

A little rusty?

If you’re feeling a bit rusty
on your HTML and CSS,
Head First HTML and
CSS was written to be the
companion to this book.

you are here 4 321

bringing it all together

<!doctype html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Battleship</title>
 <style>
 body {
 background-color: black;
 }

 div#board {
 position: relative;
 width: 1024px;
 height: 863px;
 margin: auto;
 background: url("board.jpg") no-repeat;
 }
 </style>
 </head>
 <body>
 <div id="board">

 </div>
 <script src="battleship.js"></script>
 </body>
</html>

Just a regular HTML page.

We want the game board to stay in the
middle of the page, so we’re setting the
width to 1024px (the width of the game
board), and the margins to auto.

And we want the background
of the page to be black.

Here’s where we add the
“board.jpg” image to the page, as
the background of the “board”
<div> element. We’re positioning
this <div> relative, so that we can
position the table we add in the
next step relative to this <div>.We’re going to put the

table for the game
board and the form for
getting user input here.

Here’s what the web
page looks like so far...

A Test Drive Go ahead and enter the code above (or download all the code for the book from
http://wickedlysmart.com/hfjs) into the file “battleship.html” and then load it in your
browser. Our test run is below.

We’ll put our code in the file
“battleship.js”. Go ahead and
create a blank file for that.

http://wickedlysmart.com/hfjs

322 Chapter 8

creating the html for the game

Step 2: Creating the table

<div id="board">

 <table>

 <tr>

 <td id="00"></td><td id="01"></td><td id="02"></td><td id="03">
</td><td id="04"></td> <td id="05"></td><td id="06"></td>

 </tr>

 <tr>

 <td id="10"></td><td id="11"></td><td id="12"></td><td id="13"></td>
<td id="14"></td> <td id="15"></td><td id="16"></td>

 </tr>

 ...

 <tr>

 <td id="60"></td><td id="61"></td><td id="62"></td><td id="63"></td>
<td id="64"></td><td id="65"></td><td id="66"></td>

 </tr>

 </table>

</div>

Next up is the table. The table will overlay the visual grid in the background image, and
provide the area to place the hit and miss graphics where you play the game. Each cell (or
if you remember your HTML, each <td> element) is going to sit right on top of a cell
in the background image. Now here is the trick: we’ll give each cell its own id, so we can
manipulate it later with CSS and JavaScript. Let’s check out how we’re going to create
these ids and add the HTML for the table:

Each cell of the grid
corresponds to a <td>
in the table. Each id represents the

cell’s location in the grid.
So, the top-left cell gets
the id of “00” and the
bottom-right cell gets
the id “66”.

In the game, the rows are represented
with letters (A, B, C, etc.) but for our
ids, we’re going to replace the letter
with its corresponding number (0, 1, 2,
etc.) So the first row of the grid is row
0 (for A), and the last one is 6 (for G).

This is a cell with id “66”

Here’s the HTML for the table. Go ahead and add this between the <div> tags:

We’re nesting the table inside the “board” <div>.

Make sure each <td>
gets the correct id
corresponding to its row
and column in the grid.

We’ve left out a few rows to save some trees, but we’re sure you can fill these in on your own.

This cell has id=“60”

you are here 4 323

bringing it all together

Step 3: Player interaction
Okay, now we need an HTML element to enter guesses (like “A0” or “E4”), and an
element to display messages to the player (like “You sank my battleship!”). We’ll use a
<form> with a text <input> for the player to submit guesses, and a <div> to create an
area where we can message the player:

<div id="board">

 <div id="messageArea"></div>

 <table>

 ...

 </table>

 <form>

 <input type="text" id="guessInput" placeholder="A0">

 <input type="button" id="fireButton" value="Fire!">

 </form>

</div>

We'll notify players
when they’ve sunk
battleships with a
message up in the top
left corner.

And here’s where
players can enter
their guesses.

The messageArea <div> will be used to
display messages from code.

The <form> has two inputs: one
for the guess (a text input) and
one for the button. Note the
ids on these elements. We’ll need
them later when we write the
code to get the player’s guess.Notice that the message area <div>, the <table>, and the <form> are all nested within the “board” <div>. This is important for the CSS on the next page.

324 Chapter 8

adding CSS to the game

Adding some more style
If you load the page now (go ahead, give it a try), most of the
elements are going to be in the wrong places and the wrong
size. So we need to provide some CSS to put everything in the
right place, and make sure all the elements, like the table cells,
have the right size to match up with the game board image.

To get the elements into the right places, we’re going to use
CSS positioning to lay everything out. We’ve positioned the
“board” <div> element using position relative, so we can now
position the message area, table, and form at specific places
within the “board” <div> to get them to display exactly where
we want them.

Let’s start with the “messageArea” <div>. It’s nested inside the
“board” <div>, and we want to position it at the very top left
corner of the game board:

body {

 background-color: black;

}

div#board {

 position: relative;

 width: 1024px;

 height: 863px;

 margin: auto;

 background: url("board.jpg") no-repeat;

}

div#messageArea {

 position: absolute;

 top: 0px;

 left: 0px;

 color: rgb(83, 175, 19);

}

We're positioning
the message area
at the top left of
the board.

The “board” <div> is positioned
relative, so everything nested
within this <div> can be
positioned relative to it.

We want the message area to
be positioned at the top left
corner of the game board.

 � “position: relative” positions an
element at its normal location in the
flow of the page.

 � “position: absolute” positions an
element based on the position of its
most closely positioned parent.

 � The top and left properties can
be used to specify the number
of pixels to offset a positioned
element from its default position.

The messageArea <div> is nested inside the board
<div>, so its position is specified relative to the
board <div>. So it will be positioned 0px from
the top and 0px from the left of the top left
corner of the board <div>.

you are here 4 325

bringing it all together

body {
 background-color: black;
}
div#board {
 position: relative;
 width: 1024px;
 height: 863px;
 margin: auto;
 background: url("board.jpg") no-repeat;
}
div#messageArea {
 position: absolute;
 top: 0px;
 left: 0px;
 color: rgb(83, 175, 19);
}
table {

 position: absolute;

 left: 173px;

 top: 98px;

 border-spacing: 0px;

}

td {

 width: 94px;

 height: 94px;

}

form {

 position: absolute;

 bottom: 0px;

 right: 0px;

 padding: 15px;

 background-color: rgb(83, 175, 19);

}

form input {

 background-color: rgb(152, 207, 113);

 border-color: rgb(83, 175, 19);

 font-size: 1em;

}

We can also position the table and the form within the “board” <div> , again
using absolute positions to get these elements precisely where we want them.
Here’s the rest of the CSS:

We position the <table> 173 pixels from

the left of the board and
 98 pixels

from the top, so it aligns with the grid

in the background image.

Each <td> gets a specific width and
height so that the cells of the <table>
match up with the cells of the grid.

We’re placing the <form> at the bottom
right of the board. It obscures the
bottom right numbers a bit, but that’s
okay (you know what they are). We’re also
giving the <form> a nice green color to
match the background image.

And finally, a bit of styling on the two
<input> elements so they fit in with the
game theme, and we’re done!

326 Chapter 8

using CSS for hits and misses

A Test Drive It’s time for another game checkpoint. Get all the HTML and CSS entered into your
HTML file and then reload the page in your browser. Here’s what you should see:

Step 4: Placing the hits and misses

The game board is looking great don’t you think? However, we still need to figure
out how to visually add hits and misses to the board—that is, how to add either
a “ship.png” image or a “miss.png” image to the appropriate spot on the board
for each guess. Right now we’re only going to worry about how to craft the right
markup or style to do this, and then later we’ll use the same technique in code.

So how do we get a “ship.png” image or a “miss.png” image on the board? A
straightforward way is to add the appropriate image to the background of a <td>
element using CSS. Let’s try that by creating two classes, one named “hit” and
the other “miss”. We’ll use the background CSS property with these images so
an element styled with the “hit” class will have the “ship.png” in its background,
and an element styled with the “miss” class will have the “miss.png” image in its
background. Like this:

.hit {

 background: url("ship.png") no-repeat center center;

}

.miss {

 background: url("miss.png") no-repeat center center;

}

Even though you can’t see
it (because it’s invisible), the
table is sitting right on top
of the grid.

The form input is ready to
take your guesses, although
nothing will happen until we
write some code.

ship.png

miss.png

Each CSS rule
places a single,
centered image
in the selected
element.

If an element is in the hit class it gets the ship.png image. If the
element is in the miss class, it gets the miss.png image in its background.

you are here 4 327

bringing it all together

Practice Drills

 Ship 1: A6, B6, C6

 Ship 2: C4, D4, E4

 Ship 3: B0, B1, B2

and here are the player’s guesses:

 A0, D4, F5, B2, C5, C6

Check your answer at the end of the chapter before you go on.

Before we write the code that’s going to place hits and misses on the game board, get a little more
practice to see how the CSS works. Manually play the game by adding the “hit” and “miss” classes into
your markup, as dictated by the player’s moves below. Be sure to check your answers!

Using the hit and miss classes

<tr>

<td id="10"></td> <td id="11"></td> <td id="12"></td> <td id="13" class="hit"></td>
<td id="14"></td> <td id="15"></td> <td id="16"></td>

</tr>

Make sure you’ve added the hit and miss class definitions to your CSS.
You may be wondering how we’re going to use these classes. Let’s do
a little experiment right now to demonstrate: imagine you have a ship
hidden at “B3”, “B4” and “B5”, and the user guesses “B3”—a hit! So,
you need to place a “ship.png” image at B3. Here’s how you can do
that: first convert the “B” into a number, 1 (since A is 0, B is 1, and so
on), and find the <td> with the id “13” in your table. Now, add the
class “hit” to that <td>, like this:

Now when you reload the page, you’ll see a battleship at location
“B3” in the game board. What we see when we add the

class “hit” to element with id “13”.

Make sure you’ve added the
hit and miss classes from the
previous page to your CSS.

When you’re done,
remove any classes
that you’ve added to
your <td> elements so
you’ll have an empty
board to use when we
start coding.

Remember, you’ll
need to convert the
letters to numbers,
with A = 0, ... G = 6.

Here we’ve added the “hit” class to the <td>.

328 Chapter 8

questions about the game

Q: I didn’t know it was okay to use a
string of numbers for the id attributes in
our table?

A: Yes. As of HTML5, you are allowed
to use all numbers as an element id. As
long as there are no spaces in the id value,
it’s fine. And for the Battleship application,
using numbers for each id works perfectly
as a way to keep track of each table
position, so we can access the element at
that position quickly and easily.

Q: So just to make sure I understand,
we’re using each td element as a cell
in the gameboard, and we’ll mark a cell
as being a hit or a miss with the class
attribute?

A: Right, there are a few pieces here:
we have a background image grid that is
just for eye candy, we have a transparent
HTML table overlaying that, and we use
the classes “hit” and “miss” to put an image
in the background of each table cell when
needed. This last part will all be done from
code, when we’re going to dynamically add
the class to an element.

Q: It sounds like we’re going to
need to convert letters, as in “A6”, to
numbers so we get “06”. Will JavaScript
do this automatically for us?

A: No, we’re going to have to do that
ourselves, but we have an easy way to
do it—we’re going to use what you know
about arrays to do a quick conversion…
stay tuned.

Q: I’m not sure I completely
remember how CSS positioning works.

A: Positioning allows you to specify an
exact position for an element. If an element
is positioned “relative”, then the element
is positioned based on its normal location
in the flow of the page. If an element is
positioned “absolute”, then that element is
positioned at a specific location, relative
to its most closely positioned parent.
Sometimes that’s the entire page, in which
case the position you specify could be its
top left position based on the corner of the
web browser. In our case, we’re positioning
the table and message area elements
absolutely, but in relation to the game board
(because the board is the most closely
positioned parent of the table and the
message area).

If you need a more in-depth refresher on
CSS positioning, check out Chapter 11 of
Head First HTML and CSS.

Q: When I learned about the HTML
form element, I was taught there is an
action attribute that submits the form.
Why don’t we have one?

A: We don’t need the action attribute in
the <form> because we’re not submitting
the form to a server-side application. For
this game, we’re going to be handling
everything in the browser, using code.
So, instead of submitting the form, we’re
going to implement an event handler to be
notified when the form button is clicked,
and when that happens, we’ll handle
everything in our code, including getting
the user’s input from the form. Notice that
the type of the form button is “button”, not

“submit”, like you might be used to seeing
if you’ve implemented forms that submit
data to a PHP program or another kind of
program that runs on the server. It’s a good
question; more on this later in the chapter.

you are here 4 329

bringing it all together

How to design the game
With the HTML and CSS out of the way, let’s get to the real game design. Back in Chapter 2, we
hadn’t covered functions or objects or encapsulation or learned about object-oriented design, so
when we built the first version of the Battleship game, we used a procedural design—that is, we
designed the game as a series of steps, with some decision logic and iteration mixed in. You also
hadn’t learned about the DOM, so the game wasn’t very interactive. This time around, we’re
going to organize the game into a set of objects, each with its own responsibilities, and we’re
going to use the DOM to interact with the user. You’ll see how this design makes approaching the
problem a lot more straightforward.

Let’s first get introduced to the objects we’re going to design and implement. There are three:
the model, which will hold the state of the game, like where each ship is located and where it’s
been hit; the view, which is responsible for updating the display; and the controller, which glues
everything together by handling the user input, making sure the game logic gets played and
determining when the game is over.

Model

View

Controller

My job is to keep
the display updated with

hits, misses and messages
for the user.

My job is to keep
track of the ships: where

they are, if they’ve been hit,
and if they’ve been sunk.

I glue everything
together including getting
the player’s input and
executing the game logic.

330 Chapter 8

exercise to build the view

Here’s a message.
Messages will be things like
“HIT!”, “You missed.” and
“You sank my battleship!”

Here the display has
a MISS placed on
the grid.

And here the display has a
ship placed on the grid.

It’s time for some object design. We’re going to start with the view object. Now,
remember, the view object is responsible for updating the view. Take a look at the
view below and see if you can determine the methods we want the view object to
implement. Write the declarations for these methods below (just the declarations;
we’ll code the bodies of the methods in a bit) along with a comment or two about
what each does. We’ve done one for you. Check your answers before moving on:

var view = {

 // this method takes a string message and displays it

 // in the message display area

 displayMessage: function(msg) {

 // code to be supplied in a bit!

 }

};

Your methods go here!

Notice we’re defining an object and
assigning it to the variable view.

you are here 4 331

bringing it all together

var view = {

 displayMessage: function(msg) {

 },

 displayHit: function(location) {

 },

 displayMiss: function(location) {

 }

};

Implementing the View
If you checked the answer to the previous exercise, you’ve
seen that we’ve broken the view into three separate methods:
displayMessage, displayHit and displayMiss. Now,
there is no one right answer. For instance, you might have just
two methods, displayMessage and displayPlayerGuess,
and pass an argument into displayPlayerGuess that
indicates if the player’s guess was a hit or a miss. That is a
perfectly reasonable design. But we’re sticking with our design
for now... so let’s think through how to implement the first
method, displayMessage:

Here’s our view object.

We’re going to start here.

How displayMessage works
To implement the displayMessage method you need to
review the HTML and see that we have a <div> with the id

“messageArea” ready for messages:

<div id="board">

 <div id="messageArea"></div>

 ...

</div>

We’ll use the DOM to get access to this <div>, and then
set its text using innerHTML. And remember, whenever you
change the DOM, you’ll see the changes immediately in the
browser. Here’s what we’re going to do…

If not, shame on you. Do it now!

332 Chapter 8

thinking about object design

Hey wait just a
minute... how can we implement

the view object without first
getting the player’s input and all
that?

That’s one great thing about objects.
We can make sure objects fulfill their responsibility
without worrying about every other detail of the
program. In this case the view just needs to know
how to update the message area and place hit and
miss markers on the grid. Once we’ve correctly
implemented that behavior, we’re done with the view
object and we can move on to other parts of the code.

The other advantage of this approach is we can test
the view in isolation and make sure it works. When we
test many aspects of the program at once, we increase
the odds something is going to go wrong and at the
same time make the job of finding the problem more
difficult (because you have to examine more areas of
the code to find the problem).

To test an isolated object (without having finished the
rest of the program yet), we’ll need to write a little
testing code that we’ll throw away later, but that’s
okay.

So let’s finish the view, test it, and then move on!

 � Use the DOM to get the element with the id “messageArea”.

 � Set that element’s innerHTML to the message passed to the
displayMessage method.

Implementing displayMessage
Let’s get back to writing the code for displayMessage. Remember it needs to:

you are here 4 333

bringing it all together

var view = {

 displayMessage: function(msg) {

 var messageArea = document.getElementById("messageArea");

 messageArea.innerHTML = msg;

 },

 displayHit: function(location) {

 },

 displayMiss: function(location) {

 }

};

So open up your blank “battleship.js” file, and add the view object:

The displayMessage method
takes one argument, a msg.

We get the messageArea
element from the page...

...and update the text of the messageArea element by setting its innerHTML to msg.

Now before we test this code, let’s go ahead and write the other two
methods. They won’t be incredibly complicated methods, and this
way we can test the entire object at once.

How displayHit and displayMiss work

So we just talked about this, but remember, to have an image appear on
the game board, we need to take a <td> element and add either the “hit”
or the “miss” class to the element. The former results in a “ship.png”
appearing in the cell and the latter results in “miss.png” being displayed.

<tr>

<td id="10"></td> <td class="hit" id="11"></td> <td id="12"></td> ...

</tr>

Now in code, we’re going to use the DOM to get access to a
<td>, and then set its class attribute to “hit” or “miss” using the
setAttribute element method. As soon as we set the class
attribute, you’ll see the appropriate image appear in the browser.
Here’s what we’re going to do:

 � Get a string id that consists of two numbers for the
location of the hit or miss.

 � Use the DOM to get the element with that id.

 � Set that element’s class attribute to “hit” if we’re in
displayHit, and “miss” if we’re in displayMiss.

We can affect the display by
adding the “hit” or “miss” class to

the <td> elements. Now we just
need to do this from code.

334 Chapter 8

implementing the view

We’re using the id we created from
the player's guess to get the correct
element to update.

var view = {

 displayMessage: function(msg) {

 var messageArea = document.getElementById("messageArea");

 messageArea.innerHTML = msg;

 },

 displayHit: function(location) {

 var cell = document.getElementById(location);

 cell.setAttribute("class", "hit");

 },

 displayMiss: function(location) {

 var cell = document.getElementById(location);

 cell.setAttribute("class", "miss");

 }

};

And then setting the class of
that element to “hit”.

We do the same thing in displayMiss,
only we set the class to “miss” which
adds a miss image to the element.

Remember the location is created
from the row and column and
matches an id of a <td> element.

Make sure you add the code for displayHit and displayMiss to your “battleship.js” file.

Implementing displayHit and displayMiss
Both displayHit and displayMiss are methods that take the location of a hit or
miss as an argument. That location should match the id of a cell (or <td> element) in
the table representing the game board in the HTML. So the first thing we need to do is
get a reference to that element with the getElementById method. Let’s try this in the
displayHit method:

Now let’s add this code to the view object, and write displayMiss as well:

We then set the class of that element
to “hit”. This will immediately add a
ship image to the <td> element.

displayHit: function(location) {

 var cell = document.getElementById(location);

},

The next step is to add the class “hit” to the cell, which we can do with the
setAttribute method like this:

displayHit: function(location) {

 var cell = document.getElementById(location);

 cell.setAttribute("class", "hit");

},

you are here 4 335

bringing it all together

Another Test Drive...
Let’s put the code through its paces before moving on…in fact,
let’s take the guesses from the previous Practice Drills exercise and
implement them in code. Here’s the sequence we want to implement:

To represent that sequence in code, add this to the bottom of
your “battleship.js” JavaScript file:

HIT

 A0, D4, F5, B2, C5, C6

MISS MISS HIT
MISS HIT

view.displayMiss("00");
view.displayHit("34");
view.displayMiss("55");
view.displayHit("12");
view.displayMiss("25");
view.displayHit("26");

Remember, displayHit and displayMiss take
a location in the board that's already been
converted from a letter and a number to
a string with two numbers that corresponds
to an id of one of the table cells.

“A0”
“D4”
“F5”

“B2”
“C5”

“C6”

And, let’s not forget to test displayMessage:

view.displayMessage("Tap tap, is this thing on?");

Any message will do for
simple testing...

After all that, reload the page in your browser and check out the
updates to the display.

The “tap tap” message is
displayed up here at the
top left of the view.

And the hits and misses we displayed using the view object are displayed in the game board.

Check each one to make sure
it’s in the right spot.

One of the benefits
of breaking up the
code into objects
and giving each
object only one
responsibility is
that we can test
each object to make
sure it’s doing its
job correctly.

336 Chapter 8

planning the model

The Model
With the view object out of the way, let’s move on to the model. The model is where we
keep the state of the game. The model often also holds some logic relating to how the state
changes. In this case the state includes the location of the ships, the ship locations that have
been hit, and how many ships have been sunk. The only logic we’re going to need (for now)
is determining when a player’s guess has hit a ship and then marking that ship with a hit.

Here’s what the model object is going to look like:

Model

ships: The ship locations and hits.

shipsSunk: How many ships
have been sunk.

fire: A method to fire on a ship and
figure out if the shot is a hit or miss.

These are all
properties that hold
the current state of
the game.

And this is a method that handles firing upon the ships.

When the state of the game changes—that is, when you hit a ship, or miss—then the view
needs to update the display. To do this, the model needs to talk to the view, and luckily we
have a few methods the model can use to do that. We’ll get our game logic set first in the
model, then we’ll add code to update the view.

How the model interacts with the view

Model View

Hey View, you need
to update. The user just
hit a ship at location “B0”.

view.displayHit(“10”)

Got it, thanks! I’ll
take care of updating
the display to reflect
that.

The model notifies the view of a change in state, so the view can take care of updating the display.

numShips: The number of ships
in the game.

shipLength: The number of
locations in each ship.

boardSize: The size of the grid
for the board.

you are here 4 337

bringing it all together

A

B

C

D

E

F

G

0 1 2 3 4 5 6

Ship3

Ship2

Sh
ip

1

Each ship takes up three
cells on the 2D board.

This ship sits at locations
“B0”, “C0”, “D0”.

Here’s another ship at
D2 through D4.

We also need to be able to
keep track of hits. Each
ship has three locations, so
we need to store three hits
for each ship too.

You’re gonna need a bigger boat... and game board
Before we start writing model code, we need to think about how to represent the state of
the ships in the model. Back in Chapter 2 in the simple Battleship game, we had a single
ship that sat on a 1x7 game board. Now things are a little more complex: we have three
ships on a 7x7 board. Here’s how it looks now:

Given how we’ve described the new game board above, how would you
represent the ships in the model (just the locations, we’ll worry about
hits later). Check off the best solution below.

 ❏ Use nine variables for the ship locations,
similar to the way we handled the ships in
Chapter 2.

 ❏ Use an array with an item for each cell in
entire board (49 items total). Record the ship
number in each cell that holds part of a ship.

 ❏ Use an array to hold all nine locations. Items
0-2 will hold the first ship, 3-5 the second, and
so on.

 ❏ Use three different arrays, one for each ship,
with three locations contained in each.

 ❏ Use an object named ship with three location
properties. Put all the ships in an array named
ships.

 ❏ ______________________________________

HIT

And a third ship at G3-G5.

You’ll note that the ships don’t
overlap on the board. That
would be impossible on a physical
Battleship board and would lead
to weird game play. We’ll come
back later to see how to make
sure ships don't overlap when
we talk about how to randomly
place ships on the board.

Or write in your own answer.

338 Chapter 8

a data structure for the ships

var ships = [{ locations: ["10", "20", "30"], hits: ["", "", ""] },

 { locations: ["32", "33", "34"], hits: ["", "", ""] },

 { locations: ["63", "64", "65"], hits: ["", "", "hit"] }];

As you can see there are many ways we can represent ships, and you may have
even come up with a few other ways of your own. You’ll find that no matter
what kind of data you’ve got, there are many choices for storing that data,
with various tradeoffs depending on your choice—some methods will be space
efficient, others will optimize run time, some will just be easier to understand,
and so on.

We’ve chosen a representation for ships that is fairly simple—we’re representing
each ship as an object that holds the locations it sits in, along with the hits it’s
taken. Let’s take a look at how we represent one ship:

How we’re going to represent the ships

And, rather than managing three different variables to hold the ships,
we’ll create a single array variable to hold them all, like this:

Each ship has an array of three
locations and an array to track hits.

Note the plural name, ships.

Here’s the first ship...
...and the second...
...and the third.

var ship1 = { locations: ["10", "20", "30"], hits: ["", "", ""] };

var ship2 = { locations: ["32", "33", "34"], hits: ["", "", ""] };

var ship3 = { locations: ["63", "64", "65"], hits: ["", "", "hit"] };

var ship1 = {

 locations: ["10", "20", "30"],

 hits: ["", "", ""]

 };

Here’s what all three ships would look like:

Each ship is an object. The ship has a locations
property and a hits property.

The locations property is an array that holds each location on the board.

The hits property is also an array that holds whether
or not a ship is hit at each location. We'll set the
array items to the empty string initially, and change
each item to “hit" when the ship has taken a hit in
the corresponding location.

We're assigning to ships an array
that holds all three ships.

Note this ship has a hit at
location “65" on the grid.

Note that we've converted
the ship locations to two
numbers, using 0 for A, 1 for
B, and so on.

you are here 4 339

bringing it all together

var ships = [{ locations: ["06", "16", "26"], hits: ["hit", "", ""] },

 { locations: ["24", "34", "44"], hits: ["", "", ""] },

 { locations: ["10", "11", "12"], hits: ["", "", ""] }];

Ship Magnets
Use the following player moves, along with the data structure for the
ships, to place the ship and miss magnets onto the game board. Does
the player sink all the ships? We’ve done the first move for you.

Here are the moves:

A6, B3, C4, D1, B0, D4, F0, A1, C6, B1, B2, E4, B6
Execute these moves
on the game board.

Here is the data
structure. Mark each
ship with a hit as the
game is played.

And here's the board and your magnets.

You might have leftover magnets.

340 Chapter 8

exercise in data structures

Let’s practice using the ships data structure to simulate some ship activities.
Using the ships definition below, work through the questions and the code
below and fill in the blanks. Make sure you check your answers before moving
on, as this is an important part of how the game works:

The player guesses "D4", does that hit a ship?______ If so, which one? __________

The player guesses "B3", does that hit a ship?______ If so, which one? __________

Which ships are already hit?____________ And, at what locations? ______________

Finish this code to access the second ship's middle location and print its value
with console.log.

var ship2 = ships[____];

var locations = ship2.locations;

console.log("Location is " + locations[____]);

Finish this code to see if the third ship has a hit in its first location:

var ship3 = ships[____];

var hits = ship3._____;

if (_____ === "hit") {

 console.log("Ouch, hit on third ship at location one");

}

Finish this code to hit the first ship at the third location:

var ______ = ships[0];

var hits = ship1._______;

hits[____] = ________;

var ships = [{ locations: ["31", "41", "51"], hits: ["", "", ""] },

 { locations: ["14", "24", "34"], hits: ["", "hit", ""] },

 { locations: ["00", "01", "02"], hits: ["hit", "", ""] }];

you are here 4 341

bringing it all together

var model = {

 boardSize: 7,

 numShips: 3,

 shipLength: 3,

 shipsSunk: 0,

 ships: [{ locations: ["06", "16", "26"], hits: ["", "", ""] },

 { locations: ["24", "34", "44"], hits: ["", "", ""] },

 { locations: ["10", "11", "12"], hits: ["", "", ""] }]

};

Implementing the model object
Now that you know how to represent the ships and the hits, let’s get some
code down. First, we’ll create the model object, and then take the ships
data structure we just created, and add it as a property. And, while we’re at it,
there are a few other properties we’re going to need as well, like numShips,
to hold the number of ships we have in the game. Now, if you’re
asking, “What do you mean, we know there are three ships, why
do we need a numShips property?” Well, what if you wanted
to create a new version of the game that was more difficult
and had four or five ships? By not “hardcoding” this value,
and using a property instead (and then using the property
throughout the code rather than the number), we can save
ourselves a future headache if we need to change the number
of ships, because we’ll only need to change it in one place.

Now, speaking of “hardcoding”, we are going to hardcode the
ships’ initial locations, for now. By knowing where the ships are,
we can test the game more easily, and focus on the core game logic for
now. We’ll tackle the code for placing random ships on the game board a
little later.

So let’s get the model object created:

The model is an object.

These three properties keep us from hardcoding values.

They are: boardSize (the size of the grid u
sed for the

board), numShips (the number of ships in the game), and

shipLength (the number of locations in each ship, 3).

The property ships is the array of
ship objects that each store the
locations and hits of one of the
three ships. (Notice that we’ve
changed ships from a variable,
which we used before, to a
property for the model object.)

We've got
quite a bit of
state already!

Later on, we’ll generate these locations
for the ships so they’re random, but
for now, we’ll hardcode them to make
it easier to test the game.

Model

ships: The ship
locations and hits.

shipsSunk: How
many ships have
been sunk.

numShips: The
number of ships in
the game.

fire: A method to
fire on a ship and
figure out if the shot
is a hit or miss.

shipLength: The
number of locations
in each ship.

boardSize: The size of
the grid for the board.

shipsSunk (initialized to 0 for the start of the game) keeps
the current number of ships that have been sunk by the player.

Note we’re also hardcoding the sizes of the locations and hits arrays.
You’ll learn how to dynamically create arrays later in the book.

342 Chapter 8

planning the fire method

Setting up the fire method
Let’s get a basic skeleton of the fire method set up. The method will take a guess as an
argument, and then iterate over each ship to determine if that ship was hit. We won’t write
the hit detection code just yet, but let’s get the rest set up now:

 � Examine each ship and see if it occupies that location.

 � If it does, you have a hit, and we’ll mark the corresponding item
in the hits array (and let the view know we got a hit). We’ll also
return true from the method, meaning we got a hit.

 � If no ship occupies the guessed location, you’ve got a miss. We’ll let
the view know, and return false from the method.

Thinking about the fire method
The fire method is what turns a player’s guess into a hit or a miss. We already
know the view object is going to take care of displaying the hits and misses,
but the fire method has to provide the game logic for determining if a
hit or a miss has occurred.

Knowing that a ship is hit is straightforward: given a player’s guess,
you just need to:

Now the fire method should also determine if a ship isn’t just hit, but if it’s sunk. We’ll
worry about that once we have the rest of the logic worked out.

var model = {

 boardSize: 7,

 numShips: 3,

 shipsSunk: 0,

 shipLength: 3,

 ships: [{ locations: ["06", "16", "26"], hits: ["", "", ""] },

 { locations: ["24", "34", "44"], hits: ["", "", ""] },

 { locations: ["10", "11", "12"], hits: ["", "", ""] }],

 fire: function(guess) {

 for (var i = 0; i < this.numShips; i++) {

 var ship = this.ships[i];

 }

 }

};

The method accepts a guess.

Then, we iterate through the array
of ships, examining one ship at a time.

Here we have our hands on a ship. We need to see if the guess matches any of its locations.

Model

ships: The ship
locations and hits.

shipsSunk: How
many ships have
been sunk.

numShips: The
number of ships in
the game.

fire: A method to fire
on a ship and figure
out if the shot is a hit
or miss.

shipLength: The
number of locations
in each ship.

boardSize: The size of
the grid for the board.

Don't forget to
add a comma here!

you are here 4 343

bringing it all together

for (var i = 0; i < this.numShips; i++) {

 var ship = this.ships[i];

 var locations = ship.locations;

 var index = locations.indexOf(guess);

 if (index >= 0) {

 // We have a hit!

 }

}

Looking for hits
So now, each time through the loop, we need to see if the guess is one of the
locations of the ship:

for (var i = 0; i < this.numShips; i++) {

 var ship = this.ships[i];

 var locations = ship.locations;

}

What we need is the code that
determines if the guess is in this ship's locations.

And we're stepping
through each ship.

And we've accessed the ship's set of
locations. Remember this is a property
of the ship that contains an array.

Notice that the indexOf method for an array is similar

to the indexOf string method. It takes a value and

returns the index of that value in the
array (or -1 if

it can't find the value).

So if we get an index greater than or
equal to zero, the user's guess is in the
location's array, and we have a hit.

Using indexOf isn’t any more efficient than writing a loop, but it is a little clearer and it’s
definitely less code. We’d also argue that the intent of this code is clearer than if we wrote
a loop: it’s easier to see what value we’re looking for in an array using indexOf. In any
case, you now have another tool in your programming toolbelt.

So, using indexOf, we can write the code to find a hit like this:

Here’s the situation: we have a string, guess, that we’re looking for in an array,
locations. If guess matches one of those locations, we know we have a hit:

guess = "16";

locations = ["06", "16", "26"];

We could write yet another loop to go through each item in the locations array,
compare the item to guess, and if they match, we have a hit.

But rather than write another loop, we have an easier way to do this:

We need to find out if the value in guess is one of the values in
the ship's locations array.

var index = locations.indexOf(guess); The indexOf method searches an array for a matching
value and returns its index, or -1 if it can't find it.

344 Chapter 8

implementing the fire method

var model = {

 boardSize: 7,

 numShips: 3,

 shipsSunk: 0,

 shipLength: 3,

 ships: [{ locations: ["06", "16", "26"], hits: ["", "", ""] },

 { locations: ["24", "34", "44"], hits: ["", "", ""] },

 { locations: ["10", "11", "12"], hits: ["", "", ""] }],

 fire: function(guess) {

 for (var i = 0; i < this.numShips; i++) {

 var ship = this.ships[i];

 var locations = ship.locations;

 var index = locations.indexOf(guess);

 if (index >= 0) {

 ship.hits[index] = "hit";

 return true;

 }

 }

 return false;

 }

};

For each ship...

If the guess is in the locations
array, we have a hit.

So mark the hits array at the same index.

Oh, and we need to return true because we had a hit.

Otherwise, if we make it through all the ships and
don't have a hit, it's a miss, so we return false.

Putting that all together...
To finish this up, we have one more thing to determine here: if we
have a hit, what do we do? All we need to do, for now, is mark the hit
in the model, which means adding a “hit” string to the hits array.
Let’s put all the pieces together:

That’s a great start on our model object. There are only a couple of
other things we need to do: determine if a ship is sunk, and let the
view know about the changes in the model so it can keep the player
updated. Let’s get started on those…

you are here 4 345

bringing it all together

Wait, can we talk about your verbosity again?
Sorry, we have to bring this up again. You’re being a bit verbose in some of
your references to objects and arrays. Take another look at the code:

Some would call this code overly verbose. Why? Because some of these references can be
shortened using chaining. Chaining allows us to string together object references so that we
don’t have to create temporary variables, like the locations variable in the code above.

Now you might ask why locations is a temporary variable? That’s because we’re using
locations only to temporarily store the ship.locations array so we can then turn
around and call the indexOf method on it to get the index of the guess. We don’t need
locations for anything else in this method. With chaining, we can get rid of that temporary
locations variable, like this:

How chaining works...

Which has a method
named indexOf.

Chaining is really just a shorthand for a longer series of steps to access properties and
methods of objects (and arrays). Let’s take a closer look at what we just did to combine
two statements with chaining.

We can combine the bottom two statements by chaining together the expressions
(and getting rid of the variable locations):

ship.locations.indexOf(guess)

Which has a
locations property,
which is an array.

And then using it to access the indexOf method.

Evaluates
to the ship
object.

1 2 3

for (var i = 0; i < this.numShips; i++) {

 var ship = this.ships[i];

 var locations = ship.locations;

 var index = locations.indexOf(guess);

 ...

}

First we get the ship...
Then we get the locations
in the ship...
Then we get the index of
the guess in the locations.

var index = ship.locations.indexOf(guess);
We’ve combined the two lines
highlighted above into a single line.

var ship = { locations: ["06", "16", "26"], hits: ["", "", ""] };

var locations = ship.locations;

var index = locations.indexOf(guess);

We were grabbing the locations array from the ship

Here's a ship object.

346 Chapter 8

is a ship sunk?

isSunk: function(ship) {
 for (var i = 0; i < this.shipLength; i++) {
 if (ship.hits[i] !== "hit") {
 return false;
 }
 }
 return true;
}

fire: function(guess) {

 for (var i = 0; i < this.numShips; i++) {

 var ship = this.ships[i];

 var index = ship.locations.indexOf(guess);

 if (index >= 0) {

 ship.hits[index] = "hit";

 if (this.isSunk(ship)) {

 this.shipsSunk++;

 }

 return true;

 }

 }

 return false;

},

isSunk: function(ship) { ... }

Meanwhile back at the battleship...
Now we need to write the code to determine if a ship is sunk. You know
the rules: a battleship is sunk when all of its locations are hit. We can add
a little helper method to check to see if a ship is sunk:

This method takes a ship, and
then checks every possible
location for a hit.

If there's a location that doesn't
have a hit, then the ship is still
floating, so return false.

Otherwise this ship is
sunk! Return true.

We'll call the method isSunk. It's going to take a ship and
return true if it's sunk and false if it is still floating.

We'll add the check here,
after we know for sure we
have a hit. If the ship is sunk,
then we increase the number of
ships that are sunk in model's
shipsSunk property.

Now, we can use that method in the fire method to find out if a ship is sunk:

Go ahead and add this method to
your model object, just below fire.

Here's where we added the new isSunk method, just below
fire. Don't forget to make sure you've got a comma
between each of the model's properties and methods!

you are here 4 347

bringing it all together

A view to a kill...
That’s about it for the model object. The model maintains the state of the game, and
has the logic to test guesses for hits and misses. The only thing we’re missing is the code
to notify the view when we get a hit or a miss in the model. Let’s do that now:

var model = {
 boardSize: 7,
 numShips: 3,
 shipsSunk: 0,
 shipLength: 3,
 ships: [{ locations: ["06", "16", "26"], hits: ["", "", ""] },
 { locations: ["24", "34", "44"], hits: ["", "", ""] },
 { locations: ["10", "11", "12"], hits: ["", "", ""] }],
 fire: function(guess) {
 for (var i = 0; i < this.numShips; i++) {
 var ship = this.ships[i];
 var index = ship.locations.indexOf(guess);
 if (index >= 0) {
 ship.hits[index] = "hit";
 view.displayHit(guess);
 view.displayMessage("HIT!");
 if (this.isSunk(ship)) {
 view.displayMessage("You sank my battleship!");
 this.shipsSunk++;
 }
 return true;
 }
 }
 view.displayMiss(guess);
 view.displayMessage("You missed.");
 return false;
 },
 isSunk: function(ship) {
 for (var i = 0; i < this.shipLength; i++) {
 if (ship.hits[i] !== "hit") {
 return false;
 }
 }
 return true;
 }
};

Notify the view that we got
a hit at the location in guess.

And ask the view to display the message “HIT!”.

Notify the view that we got
a miss at the location in guess.

And ask the view to display
the message “You missed.”.

Let the player know that
this hit sank the battleship!

This is the whole model object so you
can see the entire thing in one piece.

Remember that the methods in the view object add the “hit” or “miss” class to the element with the id at row and column in the guess string. So the view translates the “hit” in the hits array into a “hit” in the HTML. But keep in mind, the “hit” in the HTML is just for display; the “hit” in the model represents the actual state.

myarbrough
Typewritten Text

348 Chapter 8

exercise for the model

A Test Drive Add all the model code to “battleship.js”. Test it by calling the model’s fire method,
passing in a row and column of a guess each time. Our ships are hardcoded still, so
it’ll be easy for you to hit them all. Try adding some of your own as well (a few more
misses). (Download “battleship_tester.js” to see our version of the test code.)

model.fire("53");

model.fire("06");
model.fire("16");
model.fire("26");

model.fire("34");
model.fire("24");
model.fire("44");

model.fire("12");
model.fire("11");
model.fire("10");

Reload “battleship.html”. You should see your hits and
misses appear on the game board.

Q: Is using chaining to combine statements better than
keeping statements separate?

A: Not necessarily better, no. Chaining isn’t much more efficient
(you save one variable), but it does make your code shorter. We’d
argue that short chains (2 or 3 levels at most) are easier to read than
multiple lines of code, but that’s our preference. If you want to keep
your statements separate, that’s fine. And if you do use chaining,
make sure you don’t create really long chains; they will be harder to
read and understand if they’re too long.

Q: We have arrays (locations) inside an object (ship) inside
an array (ships). How many levels deep can you nest objects
and arrays like this?

A: Pretty much as deep as you want. Practically, of course, it’s
unlikely you’ll ever go too deep (and if you find yourself with more
than three or four levels of nesting, it’s likely your data structure is
getting too complex and you should rethink things a bit).

Q: I noticed we added a property named boardSize to the
model, but we haven’t used it in the model code. What is that
for?

A: We’re going to be using model.boardSize, and the other
properties in model, in the code coming up. The model’s
responsibility is to manage the state of the game, and boardSize
is definitely part of the state. The controller will access the state it
needs by accessing the model’s properties, and we’ll be adding more
model methods later that will use these properties too.

You’ll need to remove
or comment out the
previous view testing
code to get the same
results as we show
here. You can see
how to do that in
battleship_tester.js.

you are here 4 349

bringing it all together

Implementing the Controller
Now that you have the view and the model complete, we’re going to start to bring
this app together by implementing the controller. At a high level, the controller glues
everything together by getting a guess, processing the guess and getting it to the model.
It also keeps track of some administrative details, like the current number of guesses
and the player’s progress in the game. To do all this the controller relies on the model
to keep the state of the game and on the view to display the game.

More specifically, here’s the set of responsibilities we’re giving the controller:

 � Get and process the player’s guess (like “A0” or “B1”).

 � Keep track of the number of guesses.

 � Ask the model to update itself based on the latest guess.

 � Determine when the game is over (that is, when all ships
have been sunk).

Controller

guesses: Keeps number of guesses.

processGuess: Processes guesses and
passes them to the model. Detects the
end of the game.

Let’s get started on the controller by first defining a property, guesses, in the controller
object. Then we’ll implement a single method, processGuess, that takes an alpha-
numeric guess, processes it and passes it to the model.

Here’s the skeleton of the controller code; we’ll fill this in over the next few pages:

var controller = {

 guesses: 0,

 processGuess: function(guess) {

 // more code will go here

 }

};

Here we're defining our controller object, with
a property, guesses, initialized to zero.

And here's the beginning of the processGuess method, which takes a guess in the form “A0".

350 Chapter 8

processing the player’s guess

"A3"

"3""A"

0 3

"03"

You know the Battleship-style guess
format at this point: it’s a letter
followed by a number.

Processing the player’s guess
The controller’s responsibility is to get the player’s guess, make sure it’s valid, and then get
it to the model object. But, where does it get the player’s guess? Don’t worry, we’ll get to
that in a bit. For now we’re just going to assume, at some point, some code is going to call
the controller’s processGuess method and give it a string in the form:

Now after you receive a guess in this form (an alpha-numeric set of characters, like
“A3”), you’ll need to transform the guess into a form the model understands (a string
of two numeric characters, like “03”). Here’s a high level view of how we’re going to
convert a valid input into the number-only form:

Surely a player would
never enter in an invalid
guess, right? Ha! We’d
better make sure we’ve
got valid input.

Assume we've been handed a
string in alphanumeric form:

Let's then break the string apart,
into the row and the column.

We'll convert this to a number
and just check to make sure this
number is between 0 and six.

We'll convert the
letter to a number
and check to make
sure it is between
zero and six.

Finally we'll put the two numbers
together back into a string.

"A3"

This is a great
technique when you are
coding. Focus on the
requirements for the
specific code you’re
working on. Thinking
about the whole
problem at once is
often a less successful
technique.

But first things first. We also need to check that the input is valid. Let’s plan this all
out before we write the code.

you are here 4 351

bringing it all together

Rather than putting all this guess-processing code into the
processGuess method, we’re going to write a little helper
function (after all we might be able to use this again). We’ll
name the function parseGuess.

Let’s step through how it is going to work before we start
writing code:

Planning the code...

1 We get a player’s guess in classic
Battleship-style as a single letter
followed by a number.

2 Check the input to make sure
it is valid (not null or too long
or too short).

3 Take the letter and convert it
to a number: A to 0, B to 1, and
so on.

Get player’s
guess

Is input
valid?

no

yes

Convert letter
to number

no

yes

Is
computed
number
valid?

Is second
number valid?

create
and

return
string

1

2

3

4

yes

no
5

6
return

null

4 See if the number from step 3
is valid (between 0 and 6).

5 Check the second number for
validity (also between 0 and 6).

6 If any check failed, return null.
Otherwise concatenate the two
numbers into a string and return
the string.

352 Chapter 8

parsing the player’s guess

function parseGuess(guess) {

 var alphabet = ["A", "B", "C", "D", "E", "F", "G"];

 if (guess === null || guess.length !== 2) {

 alert("Oops, please enter a letter and a number on the board.");

 } else {

 var firstChar = guess.charAt(0);

 var row = alphabet.indexOf(firstChar);

 }

}

We have a solid plan for coding this, so let’s get started:

Implementing parseGuess

1 Let’s tackle steps one and two. All we need to do is accept the
player’s guess and check to make sure it is valid. At this point we’re
just going to define validity as accepting a string that has exactly
two characters in it.

2

function parseGuess(guess) {

 if (guess === null || guess.length !== 2) {

 alert("Oops, please enter a letter and a number on the board.");

 }

}

The guess is passed into the guess parameter.
And then we check for null and to
make sure the length is 2 characters.

If not, we alert the player.

3 Next, we take the letter and convert it to a number by using a
helper array that contains the letters A-G. To get the number, we
can use the indexOf method to get the index of the letter in the
array, like this:

An array loaded with each letter that
could be part of a valid guess.

Grab the first
character of the guess.

Then, using indexOf, we get back a number between zero
and six that corresponds to the letter. Try a couple of
examples to see how this works.

you are here 4 353

bringing it all together

4 5 Now we’ll handle checking both characters of the guess to see if they
are numbers between zero and six (in other words, to make sure they
are both valid positions on the board).

function parseGuess(guess) {

 var alphabet = ["A", "B", "C", "D", "E", "F", "G"];

 if (guess === null || guess.length !== 2) {

 alert("Oops, please enter a letter and a number on the board.");

 } else {

 var firstChar = guess.charAt(0);

 var row = alphabet.indexOf(firstChar);

 var column = guess.charAt(1);

 if (isNaN(row) || isNaN(column)) {

 alert("Oops, that isn't on the board.");

 } else if (row < 0 || row >= model.boardSize ||

 column < 0 || column >= model.boardSize) {

 alert("Oops, that's off the board!");

 }

 }

}

Here we've added code to grab the
second character in the string, which
represents the column.

And we're checking to see if either
of the row or column is not a number
using the isNAN function.

We're also making sure that the
numbers are between zero and six. Actually we're being even more general here.

Instead of hardcoding the number six, we're
asking the model to tell us how big the board
is and using that number for comparison.

Rather than hard-coding the value six as the biggest value a row
or column can hold, we used the model's boardSize property. What
advantage do you think that has in the long run?

Notice we're using type conversion like crazy here! column is a string, so when we check to make sure its value is 0-6, we rely on type conversion to convert it to a number for comparison.

354 Chapter 8

finishing up the parseGuess function

function parseGuess(guess) {

 var alphabet = ["A", "B", "C", "D", "E", "F", "G"];

 if (guess === null || guess.length !== 2) {

 alert("Oops, please enter a letter and a number on the board.");

 } else {

 var firstChar = guess.charAt(0);

 var row = alphabet.indexOf(firstChar);

 var column = guess.charAt(1);

 if (isNaN(row) || isNaN(column)) {

 alert("Oops, that isn't on the board.");

 } else if (row < 0 || row >= model.boardSize ||

 column < 0 || column >= model.boardSize) {

 alert("Oops, that's off the board!");

 } else {

 return row + column;

 }

 }

 return null;

}

6 Now for our final bit of code for the parseGuess function... If
any check for valid input fails, we’ll return null. Otherwise we’ll
return the row and column of the guess, combined into a string.

At this point, everything
looks good, so we can return
a row and column.

If we get here, there was a failed
check along the way, so return null.

A Test Drive Okay, make sure all this code is entered into “battleship.js” and
then add some function calls below it all that look like this:

console.log(parseGuess("A0"));
console.log(parseGuess("B6"));
console.log(parseGuess("G3"));
console.log(parseGuess("H0"));
console.log(parseGuess("A7"));

Reload “battleship.html”, and make sure your console
window is open. You should see the results of parseGuess
displayed in the console and possibly an alert or two.

JavaScript console
00

16

63

null

null

Notice we're
concatenating the
row and column
together to make
a string, and
returning that
string. We're using
type conversion
again here: row is a
number and column
is a string, so we'll
end up with a
string.

you are here 4 355

bringing it all together

 � Get and process the player’s guess (like “A0” or “B1”).

 � Keep track of the number of guesses.

 � Ask the model to update itself based on the latest guess.

 � Determine when the game is over (that is, when all ships
have been sunk).

Now that we have the parseGuess helper function written we
move on to implementing the controller. Let’s first integrate the
parseGuess function with the existing controller code:

Meanwhile back at the controller...

var controller = {

 guesses: 0,

 processGuess: function(guess) {

 var location = parseGuess(guess);

 if (location) {

 }

 }

};

That completes the first responsibility of the controller. Let’s see
what’s left:

We’ll use parseGuess to
validate the player’s guess.

And as long as we don’t get null back, we
know we’ve got a valid location object. Remember null is a

falsey value.
And the rest of the code for the
controller will go here.

We’ll tackle
these next.

The next item on our list is straightforward: to keep track of the
number of guesses we just need to increment the guesses property
each time the player makes a guess. As you’ll see in the code, we’ve
chosen not to penalize players if they enter an invalid guess.

Next, we’ll ask the model to update itself based on the guess by calling
the model’s fire method. After all, the point of a player’s guess is to
fire hoping to hit a battleship. Now remember, the fire method takes
a string, which contains the row and column, and by some luck we get
that string by calling parseGuess. How convenient.

Let’s put all this together and implement the next step…

Counting guesses and firing the shot

356 Chapter 8

when is the game over?

var controller = {

 guesses: 0,

 processGuess: function(guess) {

 var location = parseGuess(guess);

 if (location) {

 this.guesses++;

 var hit = model.fire(location);

 }

 }

};

var controller = {

 guesses: 0,

 processGuess: function(guess) {

 var location = parseGuess(guess);

 if (location) {

 this.guesses++;

 var hit = model.fire(location);

 if (hit && model.shipsSunk === model.numShips) {

 view.displayMessage("You sank all my battleships, in " +

 this.guesses + " guesses");

 }

 }

 }

};

If the player entered a
valid guess we increase the
number of guesses by one.

And then we pass the row and column in the form
of a string to the model’s fire method. Remember,
the fire method returns true if a ship is hit.

All we have left is to determine when the game is complete. How do we do that? Well,
we know that when three ships are sunk the game is over. So, each time the guess is
a hit, we’ll check to see if there are three sunken ships, using the model.shipsSunk
property. Let’s generalize this a bit, and instead of just comparing it to the number 3,
we’ll use the model’s numShips property for the comparison. You might decide later
to set the number of ships to, say, 2 or 4, and this way, you won’t need to revisit this
code to make it work correctly.

Game over?

If the guess was a hit, and the
number of ships that are sunk is
equal to the number of ships in the
game, then show the player a message
that they’ve sunk all the ships.

We’ll show the player the total number of guesses they took to sink the ships. The guesses property is a property of “this” object, the controller.

Remember, this.guesses++
just adds one to the value
of the guesses property. It
works just like i++ in for
loops.

Also notice if the player
enters an invalid board
location, we don’t penalize
them by counting the guess.

you are here 4 357

bringing it all together

A Test Drive Okay, make sure all the controller code is entered into your “battleship.js” file
and then add some function calls below it all to test your controller. Reload
your “battleship.html” page and note the hits and misses on the board. Are
they in the right places? (Download “battleship_tester.js” to see our version.)

We let the player know the game ended in the message area, after
they sink all three ships. But the player can still enter guesses. If
you wanted to fix this so a player isn’t allowed to enter guesses
after they’ve sunk all the ships, how would you handle that?

controller.processGuess("A0");

controller.processGuess("A6");

controller.processGuess("B6");

controller.processGuess("C6");

controller.processGuess("C4");

controller.processGuess("D4");

controller.processGuess("E4");

controller.processGuess("B0");

controller.processGuess("B1");

controller.processGuess("B2");

We’re calling the controller’s
processGuess method and passing in
guesses in Battleship format.

Again, you’ll need to remove or comment out the previous testing code to get the same results as we show here. You can see how to do that in battleship_tester.js.

358 Chapter 8

getting a value from a form

A0

“

”

function handleFireButton() {

 // get the player's guess from the form
 // and get it to the controller.

}

The player enters a guess and clicks on the Fire! button.

2 When Fire! is clicked, a pre-assigned event handler is called.

3

Getting a player’s guess
Now that you’ve implemented the core game logic and display, you
need a way to enter and retrieve a player’s guesses so the game can
actually be played. You might remember that in the HTML we’ve
already got a <form> element ready for entering guesses, but how
do we hook that into the game?

To do that we need an event handler. We’ve talked a little about event
handlers already. For now, we’re going to spend just enough time with
event handlers again to get the game working, and we’ll undertake
learning the nitty-gritty details of event handlers in the next chapter.
Our goal is for you to get a high-level understanding of how event
handlers work with form elements, but not necessarily understand
everything about how it works at the detailed level, right now.

Here’s the big picture:

A0

Here’s our HTML form
element, ready to take
user input.

1

1

2

3 The handler for the Fire! button grabs the player’s input from
the form and hands it to the controller.

you are here 4 359

bringing it all together

How to add an event handler to the Fire! button

function handleFireButton() {

 var guessInput = document.getElementById("guessInput");

 var guess = guessInput.value;

}

To get this all rolling the first thing we need to do is add an event handler to the Fire!
button. To do that, we first need to get a reference to the button using the button’s id.
Review your HTML again, and you’ll find the Fire! button has the id “fireButton”.
With that, all you need to do is call document.getElementById to get a reference to
the button. Once we have the button reference, we can assign a handler function to the
onclick property of the button, like this:

First, we get a reference to the Fire!
button using the button’s id:

function init() {

 var fireButton = document.getElementById("fireButton");

 fireButton.onclick = handleFireButton;

}

function handleFireButton() {

 // code to get the value from the form

}

window.onload = init;

Then we can add a click handler function
named handleFireButton to the button.

Here’s the handleFireButton function.
This function will be called whenever
you click the Fire! button.

The Fire! button is what initiates the guess, but the player’s guess is actually
contained in the “guessInput” form element. We can get the value from the form
input by accessing the input element’s value property. Here’s how you do it:

Getting the player’s guess from the form

First, we get a reference to the input form
element using the input element’s id, “guessInput”.

Then we get the guess from
the input element. The guess is
stored in the value property of
the input element.We have the value, now all we need is to do something

with it. Luckily we have lots of code already that’s
ready to do something with it. Let’s add that next.

And let’s not forget to get a
handleFireButton function started:

We need somewhere for this code to
go, so let’s create an init function.

Just like we learned in Chapter 6, we
want the browser to run init when
the page is fully loaded.

We’ll write this code in just a sec.

360 Chapter 8

testing the controller

Here’s where it all comes together. We have a controller waiting—just
dying—to get a guess from the player. All we need to do is pass the
player’s guess to the controller. Let’s do that:

Passing the input to the controller

function handleFireButton() {

 var guessInput = document.getElementById("guessInput");

 var guess = guessInput.value;

 controller.processGuess(guess);

 guessInput.value = "";

}

A6

A Test Drive This is no mere test drive. You’re finally ready to play the real game! Make
sure you’ve added all the code to “battleship.js”, and reload “battleship.html”
in your browser. Now, remember the ship locations are hardcoded, so you’ll
have a good idea of how to win this game. Below you’ll find the winning
moves, but be sure to fully test this code. Enter misses, invalid guesses and
downright incorrect guesses.

A6

B6

C6

C4

D4

E4

B0

B1

B2

These are the winning
guesses, in order by ship.
But you don’t have to enter
them all in order. Try mixing
them up a bit. Enter some
invalid guesses in between
the correct ones. Enter
misses too. That’s all part
of the Quality Assurance
testing for the game.

We’re passing the player’s guess to
the controller, and then everything
should work like magic!

This little line just resets the form input element
to be the empty string. That way you don’t have
to explicitly select the text and delete it before
entering the next guess, which would be annoying.

you are here 4 361

bringing it all together

Serious Coding

Finding it clumsy to have to click the Fire! button with every guess? Sure,
clicking works, but it’s slow and inconvenient. It would be so much easier
if you could just press RETURN, right? Here’s a quick bit of code to handle
a RETURN key press:

function handleKeyPress(e) {

 var fireButton = document.getElementById("fireButton");

 if (e.keyCode === 13) {

 fireButton.click();

 return false;

 }

}

Add a new handler. This one handles key
press events from the HTML input field.

function init() {

 var fireButton = document.getElementById("fireButton");

 fireButton.onclick = handleFireButton;

 var guessInput = document.getElementById("guessInput");

 guessInput.onkeypress = handleKeyPress;

}

Update your init function and add the handleKeyPress function anywhere
in your code. Reload and let the game play begin!

Here's the key press handler. It's
called whenever you press a key in
the form input in the page.

The browser passes an event object
to the handler. This object has info
about which key was pressed.

If you press the RETURN key, the
event's keyCode property will be set to
13. If that's the case, then we want to
cause the Fire! button to act like it
was clicked. We can do that by calling
the fireButton's click method (basically
tricking it into thinking it was clicked).

And we return false so the
form doesn't do anything else
(like try to submit itself).

362 Chapter 8

planning positions for the ships

What’s left? Oh yeah, darn it,
those hardcoded ships!

A

B

C

D

E

F

G

0 1 2 3 4 5 6

Ship

Ship

Sh
ip

Sh
ip

Each ship needs to go
in a location where it
doesn’t overlap the
other ships.

We’ve got room
for a ship here.

Ships can be
placed vertically
or horizontally.

And another here.
But this isn’t going to work, we’ve got an overlap or collision with an existing ship. We’ll have to rethink this ship.

Okay, here’s a third position for a ship that works.

At this point you’ve got a pretty amazing browser-based game created
from a little HTML, some images, and roughly 100 lines of code. But,
the one aspect of this game that is a little unsatisfying is that the ships
are always in the same location. You still need to write the code to
generate random locations for the ships every time we start a new game
(otherwise, it’ll be a pretty boring game).

Now, before we start, we want to let you know that we’re going to cover
this code at a slightly faster clip—you’re getting to the point where you
can read and understand code better, and there aren’t a lot of new
things in this code. So, let’s get started. Here’s what we need to consider:

you are here 4 363

bringing it all together

Add the new ship's locations
to the ships array.

Generate a random direction
(vertical or horizontal)

for the new ship.

Generate a random

location for the new ship.

Loop for the number of
ships we want to create.

Test to see if the new ship's locations collide with any existing ship's locations.

Code Magnets
An algorithm to generate ships is all scrambled up on the fridge. Can you put the
magnets back in the right places to produce a working algorithm? Check your
answer at the end of the chapter before you go on.

An algorithm is just a fancy

word for a sequence
 of steps

that solve a proble
m.

364 Chapter 8

methods to place the ships

How to place ships
There are two things you need to consider when placing ships on the game board. The
first is that ships can be oriented either vertically or horizontally. The second is that ships
don’t overlap on the board. The bulk of the code we’re about to write handles these two
constraints. Now, as we said, we’re not going to go through the code in gory detail, but
you have everything you need to work through it, and if you spend enough time with the
code you’ll understand each part in detail. There’s nothing in it that you haven’t already
encountered so far in the book (with one exception that we’ll talk about). So let’s dive in…

We’re going to organize the code into three methods that are part of the model object:

generateShipLocations: function() {

 var locations;

 for (var i = 0; i < this.numShips; i++) {

 do {

 locations = this.generateShip();

 } while (this.collision(locations));

 this.ships[i].locations = locations;

 }

},

The generateShipLocations function

For each ship we want to
generate locations for.

We generate a new set of locations...

... and check to see if those locations overlap with any existing ships on the board. If they do, then we need to try again. So keep generating new locations until there's no collision.Once we have locations that work, we
assign the locations to the ship’s locations
property in the model.ships array.

We’re using
a do while
loop here!

 � generateShipLocations: This is the master method. It creates a ships array in
the model for you, with the number of ships in the model’s numShips property.

 � generateShip: This method creates a single ship, located somewhere on the board.
The locations may or may not overlap other ships.

 � collision: This method takes a single ship and makes sure it doesn’t overlap with a
ship already on the board.

Let’s get started with the generateShipLocations method. This method iterates, creating
ships, until it has filled the model’s ships array with enough ships. Each time it generates a
new ship (which it does using the generateShip method), it uses the collision method
to make sure there are no overlaps. If there is an overlap, it throws that ship away and keeps
trying.

One thing to note in this code is that we’re using a new iterator, the do while loop. The do
while loop works almost exactly like while, except that you first execute the statements in
the body, and then check the condition. You’ll find certain logic conditions, while rare, work
better with do while than with the while statement.

We’re adding this method to the model object.

you are here 4 365

bringing it all together

generateShip: function() {

 var direction = Math.floor(Math.random() * 2);

 var row;

 var col;

 if (direction === 1) {

 // Generate a starting location for a horizontal ship

 } else {

 // Generate a starting location for a vertical ship

 }

 var newShipLocations = [];

 for (var i = 0; i < this.shipLength; i++) {

 if (direction === 1) {

 // add location to array for new horizontal ship

 } else {

 // add location to array for new vertical ship

 }

 }

 return newShipLocations;

},

Writing the generateShip method

The generateShip method creates an array with random locations for one
ship without worrying about overlap with other ships on the board. We’ll go
through this method in a couple of steps. The first step is to randomly pick a
direction for the ship: will it be horizontal or vertical? We’re going to determine
this with a random number. If the number is 1, then the ship is horizontal;
if it’s 0, then the ship is vertical. We’ll use our friends the Math.random and
Math.floor methods to do this as we’ve done before:

We use Math.random to generate a
number between 0 and 1, and multiply
the result by 2, to get a number
between 0 and 2 (not including 2).
We then turn that into a 0 or a 1
using Math.floor.

Generating a
random 0 or 1
is kind of like
tossing a coin.

We’re saying that if the
direction is a 1, that means
we’ll create a horizontal ship...

... and if direction is 0, that
means we’ll create a vertical ship.

For the new ship locations, we’ll start with an
empty array, and add the locations one by one.

First, we’ll create a starting location, like row = 0 and
column = 3, for the new ship. Depending on the direction, we
need different rules to create the starting location (you’ll
see why in just a sec).

We’ll loop for the number
of locations in a ship...

... and add a new location
to the newShipLocations
array each time through the
loop. Again we need slightly
different code to generate
a location depending on the
direction of the ship.

We’ll be filling in the rest of this code starting on the next page...

Once we’ve generated all the
locations, we return the array.

This method also is added to the model object.

366 Chapter 8

computing positions for the ships

Generate the starting location for the new ship

row = Math.floor(Math.random() * this.boardSize);

col = Math.floor(Math.random() * ((this.boardSize - 3) + 1));

Now that you know how the ship is oriented, you can generate the locations for the
ship. First, we’ll generate the starting location (the first position for the ship) and then
the rest of the locations will just be the next two columns (if the ship is horizontal) or
the next two rows (if it’s vertical).

To do this we need to generate two random numbers—a row and a column—for
the starting location of the ship. The numbers both have to be between 0 and 6, so
the ship will fit on the game board. But remember, if the ship is going to be placed
horizontally, then the starting column must be between 0 and 4, so that we have room
for the rest of the ship:

A horizontal ship can be located in any row...

... but the first
column must leave room
for the other two
locations of the ship.

row = Math.floor(Math.random() * ((this.boardSize - 3) + 1));

col = Math.floor(Math.random() * this.boardSize);

And, likewise, if the ship is going to be placed vertically, then
the starting row must be between 0 and 4, so that we have
room for the rest of the ship:

A vertical ship must start at row 0-4 to leave room for

the next two locations...

... but can be located in any column.

We’re computing col in a generalized way
so we can change the board size later if
we want. We subtract 3 from the board
size (7), and then add 1 back to that to
get 5, so when we multiply by a random
number between 0 and 1, we get a result
that is between 0 and 4, not 0 and 3.
(Also, remember that boardSize is a
property of the model.)

you are here 4 367

bringing it all together

generateShip: function() {

 var direction = Math.floor(Math.random() * 2);

 var row;

 var col;

 if (direction === 1) {

 row = Math.floor(Math.random() * this.boardSize);

 col = Math.floor(Math.random() * (this.boardSize - (this.shipLength + 1)));

 } else {

 row = Math.floor(Math.random() * (this.boardSize - (this.shipLength + 1)));

 col = Math.floor(Math.random() * this.boardSize);

 }

 var newShipLocations = [];

 for (var i = 0; i < this.shipLength; i++) {

 if (direction === 1) {

 newShipLocations.push(row + "" + (col + i));

 } else {

 newShipLocations.push((row + i) + "" + col);

 }

 }

 return newShipLocations;

},

Completing the generateShip method
Plugging that code in, now all we have to do is make sure we add the starting location
along with the next two locations to the newShipLocations array.

Here’s the code to generate a starting location for the ship on the board.

We use this.shipLength (instead

of 3 from the previous page) to

generalize the code, so we can use it

for any ship length.

This is the code for a horizontal ship.
Let’s break it down...

We’re pushing a new
location onto the
newShipLocations array.

That location is a string
made up of the row (the
starting row we just
computed above)...

... and the column + i. The first time through the
loop, i is 0, so it’s just the starting column. The
second time, it’s the next column over, and the
third, the next column over again. So we’ll get
something like “01”, “02”, “03” in the array.

Here, we use parentheses to make sure i is
added to col before it’s converted to a string.

Same thing here only
for a vertical ship. So now, we’re increasing the

row instead of the column,
adding i to the row each
time through the loop.

For a vertical ship, we’ll get something
like “31”, “41”, “51” in the array.

Once we’ve filled the array
with the ship’s locations, we
return it to the calling method,
generateShipLocations.

Remember, when we add a string and a number, + is concatenation not addition, so we get a string.

368 Chapter 8

the collision method

collision: function(locations) {

 for (var i = 0; i < this.numShips; i++) {

 var ship = model.ships[i];

 for (var j = 0; j < locations.length; j++) {

 if (ship.locations.indexOf(locations[j]) >= 0) {

 return true;

 }

 }

 }

 return false;

}

Avoiding a collision!
The collision method takes a ship and checks to see if any of the locations
overlap—or collide—with any of the existing ships already on the board.

We’ve implemented this using two nested for loops. The outer loop iterates over all
the ships in the model (in the model.ships property). The inner loop iterates over
all the new ship’s locations in the locations array, and checks to see if any of those
locations is already taken by an existing ship on the board.

locations is an array of
locations for a new ship we’d
like to place on the board.

For each ship already on the board...

...check to see if any of the locations
in the new ship’s locations array are in
an existing ship’s locations array.

We’re using indexOf to check if the
location already exists in a ship, so if the
index is greater than or equal to 0, we
know it matched an existing location, so we
return true (meaning, we found a collision).

Returning from inside a loop
that’s inside another loop
stops the iteration of both
loops immediately, exiting the
function and returning true.

If we get here and haven’t returned, then we never found a match for any of the locations we were checking, so we return false (there was no collision).

In this code, we have two loops: an outer loop to iterate over all the ships
in the model, and an inner loop to iterate over each of the locations we’re
checking for a collision. For the outer loop, we used the loop variable i,
and for the inner loop, we used the loop variable j. Why did we use two
different loop variable names?

Look back at page 364 to see
where we call the collision method.

you are here 4 369

bringing it all together

function init() {

 var fireButton = document.getElementById("fireButton");

 fireButton.onclick = handleFireButton;

 var guessInput = document.getElementById("guessInput");

 guessInput.onkeypress = handleKeyPress;

 model.generateShipLocations();

}

var model = {

 boardSize: 7,

 numShips: 3,

 shipLength: 3,

 shipsSunk: 0,

 ships: [{ locations: ["06", "16", "26"], hits: ["", "", ""] },

 { locations: ["24", "34", "44"], hits: ["", "", ""] },

 { locations: ["10", "11", "12"], hits: ["", "", ""] }],

 ships: [{ locations: [0, 0, 0], hits: ["", "", ""] },

 { locations: [0, 0, 0], hits: ["", "", ""] },

 { locations: [0, 0, 0], hits: ["", "", ""] }],

 fire: function(guess) { ... },

 isSunk: function(ship) { ... },

 generateShipLocations: function() { ... },

 generateShip: function() { ... },

 collision: function(locations) { ... }

};

Two final changes
We’ve written all the code we need to generate random locations for the ships; now
all we have to do is integrate it. Make these two final changes to your code, and then
take your new Battleship game for a test drive!

Remove the hardcoded
ship locations...

... and replace
them with arrays
initialized with 0's
instead.

And of course, add the call
to generate the ship locations,
which will fill in those empty
arrays in the model.We’re calling model.generateShipLocations

from the init function so it happens right
when you load the game, before you start
playing. That way all the ships will have
locations ready to go when you start playing.

Don’t forget you can download the complete code for
the Battleship game at http://wickedlysmart.com/hfjs.

http://wickedlysmart.com/hfjs

370 Chapter 8

testing the battleship game

A Final Test Drive This is the FINAL test drive of the real game, with
random ship locations. Make sure you’ve got all the
code added to “battleship.js”, reload “battleship.html”
in your browser, and play the game! Give it a good run
through. Play it a few times, reloading the page each
time to generate new ship locations for each new game.

A0

Oh, and how to cheat!
To cheat, open up the developer
console, and type model.ships.
Press return and you should see the
three ship objects containing the
locations and hits arrays. Now you
have the inside scoop on where the
ships are sitting in the game board.
But, you didn’t hear this from us!

JavaScript console

> model.ships

[Object, Object, Object
]

 hits: Array[3], hits: Array[3], hits:
Array[3]

 locations: Array[3], locations: Array[3], locati
ons: Array[3]

 0: "63" 0: "20" 0:
"60"

 1: "64" 1: "21" 1:
"61"

 2: "65" 2: "22" 2:
"62"

Beat the computer every time.

you are here 4 371

bringing it all together

Congrats, It’s Startup Time!

You’ve just built a great web
application, all in 150 (or so) lines of
code and some HTML & CSS. Like
we said, the code is yours. Now all
that’s standing between you and your
venture capital is a real business plan.
But then again, who ever let that stand in
their way!?

So now, after all the hard work, you
can relax and play a few rounds of
Battleship. Pretty darn engaging,
right?

Oh, but we’re just getting
started. With a little more
JavaScript horse power we’re
going to be able to take on
apps that rival those written in
native code.

For now, we’ve been through a lot of
code in this chapter. Get some good
food and plenty of rest to let it all
sink in. But before you do that, you’ve
got some bullet points to review and
a crossword puzzle to do. Don’t skip
them; repetition is what really drives
the learning home!

372 Chapter 8

quality assurance

QA Notes
Found a bug, I thin

k. When I get a hit on a
 ship, if

I re-enter that board l
ocation again, it re

sults

another hit at the
 same spot. Try it, you’ll see!

So, is this a bug? O
r the correct beha

vior?

Assuming it’s a bug, how would you fix it? Write

your notes here:

you are here 4 373

bringing it all together

 � We use HTML to build the structure of
the Battleship game, CSS to style it, and
JavaScript to create the behavior.

 � The id of each <td> element in the table is
used to update the image of the element to
indicate a HIT or a MISS.

 � The form uses an input with type “button”.
We attach an event handler to the button so
we can know in the code when a player has
entered a guess.

 � To get a value from a form input text element,
use the element’s value property.

 � CSS positioning can be used to position
elements precisely in a web page.

 � We organized the code using three objects: a
model, a view, and a controller.

 � Each object in the game has one primary
responsibility.

 � The responsibility of the model is to store the
state of the game and implement logic that
modifies that state.

 � The responsibility of the view is to update the
display when the state in the model changes.

 � The responsibility of the controller is to glue
the game together, to make sure the player’s
guess is sent to the model to update the
state, and to check to see when the game is
complete.

 � By designing the game with objects that
each have a separate responsibility, we
can build and test each part of the game
independently.

 � To make it easier to create and test the
model, we initially hardcoded the locations
of the ships. After ensuring the model was
working, we replaced these hardcoded
locations with random locations generated
by code.

 � We used properties in the model, like
numShips and shipLength, so we don’t
hardcode values in the methods that we
might want to change later.

 � Arrays have an indexOf method that is
similar to the string indexOf method. The
array indexOf method takes a value, and
returns the index of that value if it exists in
the array, or -1 if it does not.

 � With chaining, you can string together
object references (using the dot operator),
thus combining statements and eliminating
temporary variables.

 � The do while loop is similar to the while loop,
except that the condition is checked after
the statements in the body of the loop have
executed once.

 � Quality assurance (QA) is an important part
of developing your code. QA requires testing
not just valid input, but invalid input as well.

374 Chapter 8

javascript crossword

JavaScript cross
Your brain is frying from the coding challenges in this
chapter. Do the crossword to get that final sizzle.

1

2

3

4 5

6 7

8 9

10

11

12 13 14

15

16

17

18

Across
2. We use the __________ method to set the

class of an element.
4. To add a ship or miss image to the board, we

place the image in the ________ of a <td>
element.

6. The __________ loop executes the
statements in its body at least once.

8. Modern, interactive web apps use HTML,
CSS and _________.

10. We represent each ship in the game with an
__________.

11. The id of a <td> element corresponds to a
_____ on the game board.

Down
1. To get the guess from the form input, we

added an event ________ for the click
event.

3. Chaining is for _________ references, not
just jailbirds.

5. The __________ is good at glueing things
together.

7. To add a "hit" to the game board in the
display, we add the ____ class to the
corresonding <td> element.

9. Arrays have an _________ method too.
13. The three objects in our game design are the

model, _____, and controller.
14. 13 is the keycode for the _______ key.

ACROSS
2. We use the __________ method to set the class of an
element.
4. To add a ship or miss image to the board, we place the
image in the ________ of a <td> element.
6. The __________ loop executes the statements in its
body at least once.
8. Modern, interactive web apps use HTML, CSS and

_________.
10. We represent each ship in the game with an
__________.
11. The id of a <td> element corresponds to a _____ on
the game board.
12. The responsibility of the collision function is to make
sure that ships don’t _________.
15. We call the _______ method to ask the model to
update the state with the guess.
17. Who is responsible for state?
18. You can cheat and get the answers to
Battleship using the _______.

DOWN
1. To get the guess from the form input, we added an
event ________ for the click event.
3. Chaining is for _________ references, not just jailbirds.
5. The __________ is good at gluing things together.
7. To add a “hit” to the game board in the display, we add
the ____ class to the corresonding <td> element.
9. Arrays have an _________ method too.
13. The three objects in our game design are the model,
_____, and controller.
14. 13 is the keycode for the _______ key.
16. The __________ notifies the view when its state
changes.

you are here 4 375

bringing it all together

Practice Drills

.hit {

 background: url("ship.png") no-repeat center center;

}

.miss {

 background: url("miss.png") no-repeat center center;

}

In just a few pages, you’re going to learn how to add the MISS and ship images
to the game board with JavaScript. But before we get to the real thing, you need
to practice in the HTML simulator. We’ve got two CSS classes set up and ready
for you to practice with. Go ahead and add these two rules to your CSS, and
then imagine you’ve got ships hidden at the following locations:

 Ship 1: A6, B6, C6

 Ship 2: C4, D4, E4

 Ship 3: B0, B1, B2

and that the player has entered the following guesses:

 A0, D4, F5, B2, C5, C6

You need to add one of the two classes below to the correct cells in the grid (the
correct <td> elements in the table) so that your grid shows MISS and a ship in
the right places.

Make sure you’ve downloaded everything you need, including the two images you’ll need for this exercise.

Here’s our solution. The right spots for the
.hit class are in <td>s with the ids: “34”, “12”,
and “26”, and the ids for the .miss class
are: “00”, “25” and “55”. To add a class to an
element, you use the class attribute, like this:

<td class="miss" id="55">

After adding the classes in
the right spots, your game
board should look like this.

SOLUTION

376 Chapter 8

exercise solutions

Here’s a message.
Messages will be things like
“HIT!”, “You missed.” and
“You sank my battleship!”

Here the display has
a MISS placed on
the grid.

And here the display has a
ship placed on the grid.

var view = {

 // this method takes a string message and displays it

 // in the message display area

 displayMessage: function(msg) {

 // code to be supplied in a bit!

 },

 displayHit: function(location) {

 // code will go here

 },

 displayMiss: function(location) {

 // code will go here

 }

};

Your methods go here!

Notice we’re defining an object and
assigning it to the variable view.

It’s time for some object design. We’re going to start with the view object. Now,
remember, the view object is responsible for updating the view. Take a look at the
view below and see if you can determine the methods we want the view object to
implement. Write the declarations for these methods below (just the declarations;
we’ll code the bodies of the methods in a bit) along with a comment or two about
what each does. Here’s our solution:

you are here 4 377

bringing it all together

Given how we’ve described the new game board above, how would you
represent the ships in the model (just the locations, we’ll worry about
hits later). Check off the best solution below.

 ❏ Use nine variables for the ship locations,
similar to the way we handled the ships in
Chapter 2.

 ❏ Use an array with an item for each cell in
entire board (49 items total). Record the ship
number in each cell that holds part of a ship.

 ❏ Use an array to hold all nine locations. Items
0-2 will hold the first ship, 3-5 the second, and
so on.

 ❏ Use three different arrays, one for each ship,
with three locations contained in each.

 ❏ Use an object named ship with three location
properties. Put all the ships in an array named
ships.

 ❏ ______________________________________

Or write in your own answer.
Any of these solutions could work! (In fact
we tried each one when we were figuring
out the best way to do it.) This is the one
we use in the chapter.

H
1

S
2

E T A T T R I B U T E
O
3

N
B
4

A C K G R O U N D C
5

J L D
6

O W H
7

I L E
E E N I
C J

8
A V A S C R I

9
P T T

T N R
D O

10
B J E C T

C
11

E L L
X L
O
12

V
13

E R
14

L A P
F
15

I R E
E T M

16

W U M
17

O D E L
R D

C
18

O N S O L E
L

Across
2. We use the __________ method to set the

class of an element. [SETATTRIBUTE]
4. To add a ship or miss image to the board, we

place the image in the ________ of a <td>
element. [BACKGROUND]

6. The __________ loop executes the
statements in its body at least once.
[DOWHILE]

8. Modern, interactive web apps use HTML,
CSS and _________. [JAVASCRIPT]

10. We represent each ship in the game with an
__________. [OBJECT]

11. The id of a <td> element corresponds to a
_____ on the game board. [CELL]

Down
1. To get the guess from the form input, we

added an event ________ for the click
event. [HANDLER]

3. Chaining is for _________ references, not
just jailbirds. [OBJECT]

5. The __________ is good at glueing things
together. [CONTROLLER]

7. To add a "hit" to the game board in the
display, we add the ____ class to the
corresonding <td> element. [HIT]

9. Arrays have an _________ method too.
[INDEXOF]

13. The three objects in our game design are the
model, _____, and controller. [VIEW]

JavaScript
cross
solution

378 Chapter 8

exercise solutions

var ships = [{ locations: ["06", "16", "26"], hits: ["hit", "hit", "hit"] },

 { locations: ["24", "34", "44"], hits: ["hit", "hit", "hit"] },

 { locations: ["10", "11", "12"], hits: ["hit", "hit", "hit"] }];

Ship Magnets Solution
Use the following player moves, along with the data structure for the
ships, to place the ship and miss magnets onto the game board. Does
the player sink all the ships? We’ve done the first move for you.

Here are the moves:

A6, B3, C4, D1, B0, D4, F0, A1, C6, B1, B2, E4, B6

And here’s our solution:

Execute these moves
on the game board.

All three ships are sunk!

And here's the board and your magnets.

Leftover magnets.

you are here 4 379

bringing it all together

Let’s practice using the ships data structure to simulate some ship activities.
Using the ships definition below, work through the questions and the code
below and fill in the blanks. Make sure you check your answers before moving
on, as this is an important part of how the game works:

The player guesses "D4", does that hit a ship?______ If so, which one? __________

The player guesses "B3", does that hit a ship?______ If so, which one? __________

Which ships are already hit?______________ And at what locations? ______________

Finish this code to access the second ship’s middle location and print its value
with console.log.

var ship2 = ships[____];

var locations = ship2.locations;

console.log("Location is " + locations[____]);

Finish this code to see if the third ship has a hit in its first location:

var ship3 = ships[____];

var hits = ship3._____;

if (_______ === "hit") {

 console.log("Ouch, hit on third ship at location one");

}

Finish this code to hit the first ship at the third location:

var ______ = ships[0];

var hits = ship1._______;

hits[____] = ________;

var ships = [{ locations: ["31", "41", "51"], hits: ["", "", ""] },

 { locations: ["14", "24", "34"], hits: ["", "hit", ""] },

 { locations: ["00", "01", "02"], hits: ["hit", "", ""] }];

Ships 2 and 3 C4, A0

yes Ship 2

no

1

1

2
hits

hits[0]

ship1

“hit”
hits

2

380 Chapter 8

exercise solutions

Add the new ship's locations
to the ships array.

Generate a random direction
(vertical or horizontal)

for the new ship.

Generate a random

location for the new ship.

Loop for the number of
ships we want to create.

Test to see if the new ship's
locations collide with any
existing ship's locations.

Code Magnets Solution
An algorithm to generate ships is all scrambled up on the fridge. Can you put the magnets
back in the right places to produce a working algorithm? Here’s our solution.

this is a new chapter 381

Handling events

9 asynchronous coding

After this chapter you’re going to realize you aren’t in
Kansas anymore. Up until now, you’ve been writing code that typically

executes from top to bottom—sure, your code might be a little more complex than

that, and make use of a few functions, objects and methods, but at some point the

code just runs its course. Now, we’re awfully sorry to break this to you this late in

the book, but that’s not how you typically write JavaScript code. Rather, most

JavaScript is written to react to events. What kind of events? Well, how about a

user clicking on your page, data arriving from the network, timers expiring in the

browser, changes happening in the DOM and that’s just a few examples. In fact,

all kinds of events are happening all the time, behind the scenes, in your browser.

In this chapter we’re going rethink our approach to JavaScript coding, and learn

how and why we should write code that reacts to events.

382 Chapter 9

exercise for events

You know what a browser does, right? It retrieves a page and all that page’s contents
and then renders the page. But the browser’s doing a lot more than just that. What else
is it doing? Choose any of the tasks below you suspect the browser is doing behind the
scenes. If you aren’t sure just make your best guess.

Knows when the page is fully
loaded and displayed.

Watches all mouse movement.

Keeps track of all the clicks
you make to the page, be it
on a button, link or elsewhere.

Watches the clock and
manages timers and timed
events.

Knows when a user submits
a form.

Knows when the user
presses keys on a keyboard.

Tracks when the page has been
resized or scrolled.

Knows when an element gets
user interface focus.

Knows when the cookies are
finished baking.

Pick two of the events above. If the browser could notify your code when these
events occurred, what cool or interesting code might you write?

No, you can't use the cookie
event as one of your examples!

Retrieves additional data for
your page.

you are here 4 383

asynchronous coding

We’re sure you know by now that after the browser retrieves and displays your page, it
doesn’t just sit there. Behind the scenes, a lot is going on: users are clicking buttons, the
mouse location is being tracked, additional data is becoming available on the network,
windows are getting resized, timers are going off, the browser’s location could be changing,
and so on. All these things cause events to be triggered.

Whenever there’s an event, there is an opportunity for your code to handle it; that is, to
supply some code that will be invoked when the event occurs. Now, you’re not required to
handle any of these events, but you’ll need to handle them if you want interesting things
to happen when they occur—like, say, when the button click event happens, you might
want to add a new song to a playlist; when new data arrives you might want to process it
and display it on your page; when a timer fires you might want to tell a user the hold on a
front row concert ticket is going to expire, and so on.

What are events?

A browser’s geo-
location, as well as
a number of other
advanced types of
events, is something
we cover in Head
First HTML5
Programming. In this
book we’ll stick to
the bread & butter
foundational types of
events.

Browser

Hey, just wanted to
let you know the page
just finished loading.

Oh, just so you
know, the user just moved
the mouse a little. I can
tell you how much it moved
if you want.

Okay, letting you know
that a minute has elapsed.

The user just submitted
the form in your page. That web service just

responded to your request
and I’ve got the data ready
for you.

That video in the page
just stalled.

Whenever there’s an event, there is an opportunity
for your code to handle it.

384 Chapter 9

event handlers

What’s an event handler?
We write handlers to handle events. Handlers are typically small
pieces of code that know what to do when an event occurs. In
terms of code, a handler is just a function. When an event occurs,
its handler function is called.

To have your handler called when an event occurs, you first need
to register it. As you’ll see, there are a few different ways to do that
depending on what kind of event it is. We’ll get into all that, but for
now let’s get started with a simple example, one you’ve seen before:
the event that’s generated when a page is fully loaded.

Hey browser,
I’ve got a handler with

some code that needs to run
when you’ve finished getting
the page fully loaded. And did
I mention I’m in a hurry?

The handler, code
that will be run
later, when the page
is loaded.

You might also hear developers
use the name callback or
listener instead of handler.

The browser.

Never any pressure around
here huh? Sure thing, as soon as
I’m done loading everything, I’ve
got your handler ready to go and

I’ll be sure to invoke it.

you are here 4 385

asynchronous coding

How to create your first event handler
There’s no better way to understand events than by writing a handler and wiring it up
to handle a real, live event. Now, remember, you’ve already seen a couple of examples
of handling events—including the page load event—but we’ve never fully explained
how event handling works. The page load event is triggered when the browser has
fully loaded and displayed all the content in your page (and built out the DOM
representing the page).

Let’s step through what it takes to write the handler and to make sure it gets invoked
when the page load event is triggered:

2 Now that we have a handler written and ready to go, we need to wire
things up so the browser knows there’s a function it should invoke when
the load event occurs. To do that we use the onload property of the
window object, like this:

window.onload = pageLoadedHandler;

function pageLoadedHandler() {

 alert("I'm alive!");

}

First we need to write a function that can handle the page load event
when it occurs. In this case, the function is going to announce to the
world “I’m alive!” when it knows the page is fully loaded.

1

Here's our function, we'll name it pageLoadedHandler, but you can call it anything you like.
Remember we often refer to
this as a handler or a callback. This event handler doesn't do

much. It just creates an alert.

In the case of the load event, we assign the name
of the handler to the window's onload property.

Now when the page load event is
generated, the pageLoadedHandler
function is going to be called.

3 That’s it! Now, with this code written, we can sit back and know that
the browser will invoke the function assigned to the window.onload
property when the page is loaded.

We’re going to see that different
kinds of events are assigned
handlers in different ways.

A handler is just an ordinary function.

386 Chapter 9

testing an event handler

If we didn’t have functions, could we have event handlers?

Test drive your event
Go ahead and create a new file, “event.html”, and add the code to test your load event
handler. Load the page into the browser and make sure you see the alert.

<!doctype html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title> I'm alive! </title>

 <script>

 window.onload = pageLoadedHandler;

 function pageLoadedHandler() {

 alert("I'm alive!");

 }

 </script>

</head>

<body>

</body>

</html>

First the browser loads your
page, and starts parsing the
HTML and building up the DOM.

When it gets to your script the
browser starts executing the code.

For now, the script just defines a
function, and assigns that function to
the window.onload property. Remember
this function will be invoked when the
page is fully loaded.

Then the browser continues parsing the HTML.

When the browser is done parsing the HTML, and the

DOM is ready, the browser calls the page load handler.

Which in this case creates the “I’m alive” alert.

you are here 4 387

asynchronous coding

As we already mentioned, up until now you’ve taken a rather, let’s say, linear
approach to writing code: you took an algorithm, like computing the best bubble
solution, or generating the 99 bottles song, and wrote the code stepwise, top to
bottom.

But remember the Battleship game? The code for that game didn’t quite fit the
linear model—sure, you wrote some code that set up the game, initialized the
model, and all that—but then the main part of the game operated in a different way.
Each time you wanted to fire at another ship you entered your guess into a form
input element and pressed the “Fire” button. That button then caused a whole
sequence of actions that resulted in the next move of the game being executed. In
that case your code was reacting to the user input.

Organizing code around reacting to events is a different way of thinking about
how you write your code. To write code this way, you need to consider the events
that can happen, and how your code should react. Computer science types like
to say that this kind of code is asynchronous, because we’re writing code to be
invoked later, if and when an event occurs. This kind of coding also changes your
perspective from one of encoding an algorithm step-by-step into code, into one of
gluing together an application that is composed of many handlers handling many
different kinds of events.

If you’re ever
going to be a real Javascript

developer, you’re going to
have to learn to deal with

events.

388 Chapter 9

planning a game with events

Getting your head around events... by creating a game
The best way to understand events is with experience, so let’s get some more by writing
a simple game. The game works like this: you load a page and are presented with an
image. Not just any image, but a really blurred image. Your job is to guess what the
image is. And, to check your answer, you click on the image to unblur it.

Like this:
Here’s the
blurred version
of the image.
Hmmm, what
could it be?

When you think you
have it, click to reveal
the unblurred image.

Let’s start with the markup. We’ll use two JPG images. One is blurred and the other isn’t.
We’ve named them “zeroblur.jpg” and “zero.jpg” respectively. Here’s the markup:

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title> Image Guess </title>
 <style> body { margin: 20px; } </style>
 <script> </script>
</head>
<body>

</body>
</html>

And here’s the blurred image, placed in the page. We’ll give it an id of “zero”. You’ll see how we use the id in a sec...

Just some basic HTML, with a <script>
element all ready for our code. Rather
than use a separate file for the
JavaScript, we’ll keep it simple and add
the script here. As you’ll see, there is
very little code needed to implement this.

Hum the
Jeopardy
theme song to
yourself as you
try to figure
it out...

you are here 4 389

asynchronous coding

Implementing the game
Go ahead and load this markup in your browser and you’ll see the
blurred image. To implement the game, we need to react to a click on
the image in order to display the unblurred version of the image.

Lucky for us, every time an HTML element in the page is clicked
(or touched on a mobile device), an event is generated. Your job is to
create a handler for that event, and in it write the code to display the
unblurred version of the image. Here’s how you’re going to do that:

Access the image object in the DOM and
assign a handler to its onclick property.

In your handler, write the code to change the
image src attribute from the blurred image to
the unblurred one.

We create a function init, and assign
it to the window’s onload property to
make sure this code doesn’t run until
the page is fully loaded.

window.onload = init;

function init() {

 var image = document.getElementById("zero");

}

1

2

In the code of init, we’ll grab a
reference to the image with id=“zero”.

Let’s walk through these steps and write the code.

Step 1: access the image in the DOM

Getting access to the image is old hat for you; we just need to use our
old friend, the getElementById method, to get a reference to it.

var image = document.getElementById("zero");
Here we’re grabbing a reference to the image element and assigning it to the image variable.

Oh, but we also need this code to run only after the DOM for the
page has been created, so let’s use the window’s onload property
to ensure that. We’ll place our code into a function, init, that we’ll
assign to the onload property.

Remember in JavaScript the order
in which you define your functions
doesn’t matter. So we can define
init after we assign it to the
onload property.

Remember, we can’t get the image from the
DOM until the page has finished loading.

390 Chapter 9

adding an event handler

First, we have to get the
image from the DOM again.

function showAnswer() {

 var image = document.getElementById("zero");

 image.src = "zero.jpg";

}

Test drive
Let’s take this simple game for a test drive. Make sure you’ve
got all the HTML, CSS and JavaScript typed into a file named

“image.html”, and that you’ve got the images you downloaded
from http://wickedlysmart.com/hfjs in the same folder. Once all
that’s done, load up the file in your browser and give it a try!

Once we have the image, we can change it by setting its src property to the unblurred image.

Step 2: add the handler, and update
the image

To add a handler to deal with clicks on the image, we simply assign
a function to the image’s onclick property. Let’s call that function
showAnswer, and we’ll define it next.

window.onload = init;

function init() {

 var image = document.getElementById("zero");

 image.onclick = showAnswer;

}

Now we need to write the showAnswer function, which unblurs the
image by resetting the image element’s src property to the unblurred
image:

Click anywhere on the image to
have the showAnswer handler
called. When that happens, the
src of the image is changed to
reveal the answer.

Using the image object from the DOM, we’re assigning a handler to its onclick property.

Remember the blurred version
is named “zeroblur.jpg” and the
unblurred is named “zero.jpg”.

http://wickedlysmart.com/hfjs

you are here 4 391

asynchronous coding

Q: Is setting the src property of
the image the same as setting the src
attribute using setAttribute?

A: In this case, yes, it is. When you get
an HTML element from the DOM using
getElementById, you’re getting an element
object that has several methods and
properties. All element objects come with a
property, id, that is set to the id of the HTML
element (if you’ve given it one in your HTML).
The image element object also comes with

a src property that is set to the image file
specified in the src attribute of the
element.

Not all attributes come with corresponding
object properties, however, so you will need
to use setAttribute and getAttribute for those.
And in the case of src and id, you can use
either the properties or get/set them using
getAttribute and setAttribute and it does the
same thing.

Q: So do we have a handler called
within a handler?

A: Not really. The load handler is the code
that is called when the page is fully loaded.
When the load handler is called, we assign a
handler to the image’s onclick property, but
it won’t be called until you actually click on
the image. When you do that (potentially a
long time after the page has loaded), the
showAnswer click handler is called. So the
two handlers get called at different times.

Ah, yes. It can get tricky to follow the
flow of execution in code with a lot of
event handlers. Remember, the init function is
called when the page is loaded. But the showAnswer
function isn’t called until later, when you click the
image. So these two event handlers get called at two
different times.

In addition, remember your scope rules. In the
init function we’re putting the object returned by
getElementById into a local variable image, which
means when that function completes, the variable
falls out of scope and is destroyed. So later, when the
showAnswer function is called, we have to get the
image object again from the DOM. Sure, we could
have put this in a global variable, but overuse of
globals can lead to confusing and buggy code, which
we’d like to avoid.

Wait, why do we need to
use getElementById again in
showAnswer? I’m not sure of
the flow of execution here.

392 Chapter 9

exercise on execution flow

Below, you’ll find your game code. Your job is to play like you’re the
browser and to figure out what you need to do after each event. After

you’ve done the exercise, look at the end of the chapter to see
if you got everything. We’ve done the first bit for you.

BE the Browser

window.onload = init;
function init() {
 var image = document.getElementById("zero");
 image.onclick = showAnswer;
}

function showAnswer() {
 var image = document.getElementById("zero");
 image.src = "zero.jpg";
}

First define the functions init and showAnswerWhen page is
being loaded...

When page load
event occurs...

When image
click event
occurs...

Your answers go here.

Here’s the code you’re executing...

you are here 4 393

asynchronous coding

What if you had an entire page of images that could each be individually deblurred by
clicking? How would you design your code to handle this? Make some notes. What
might be the naive way of implementing this? Is there a way to implement this with
minimal code changes to what you’ve already written?

Judy: Hey guys.
So far the image
guessing game works
great. But we really
should expand the
game to include more
images on the page.

Jim: Sure, Judy, that’s
exactly what I was

thinking.

Joe: Hey, I’ve already got a bunch of images
ready to go, we just need the code. I’ve followed
the naming convention of “zero.jpg”, “zeroblur.
jpg”, “one.jpg”, “oneblur.jpg”, and so on...

Jim: Are we going to need to write a new click
event handler for each image? That’s going to
be a lot of repetitive code. After all, every event
handler’s going to do exactly the same thing:
replace the blurred image with its unblurred
version, right?

Joe: That’s true. But I’m not sure I know how to
use the same event handler for multiple images.
Is that even possible?

Judy: What we can do is assign the same handler,
which really means the same function, to the
onclick property of every image in the game.

Joe: So the same function gets called for every
image that is clicked on?

Judy: Right. We’ll use showAnswer as the
handler for every image’s click event.

Jim: Hmm, but how will we know which image
to deblur?

Joe: What do you mean? Won’t the click handler
know?

Jim: How will it know? Right now, our
showAnswer function assumes we clicked on
the image with the id “zero”. But if we’re calling
showAnswer for every image’s click event, then
our code needs to work for any of the images.

Joe: Oh… right… so how do we know which
image was clicked?

Judy: Actually I’ve been reading up on events,
and I think there is a way for the click handler
to know the element the user clicked on. But
let’s deal with that part later. First let’s add some
more images to the game, and see how to set the
same event handler for all of them... then we’ll
figure out how to determine which image the
user clicked.

Joe, Jim: Sounds good!

JudyJim Joe

394 Chapter 9

adding more images to the game

Let’s add some more images

<!doctype html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title> Image Guess </title>

 <style>

 body { margin: 20px; }

 img { margin: 20px; }

 </style>

 <script>

 window.onload = init;

 function init() {

 var image = document.getElementById("zero");

 image.onclick = showAnswer;

 }

 function showAnswer() {

 var image = document.getElementById("zero");

 image.src = "zero.jpg";

 }

 </script>

</head>

<body>

</body>

</html>

We’ve got a whole set of new images, so let’s start by adding them
to the page. We’ll add five more images for a total of six. We’ll also
modify the CSS to add a little whitespace between the images:

We’re just adding a margin of 20px between the images with this CSS property.

And here are the five new images we’re adding.
Notice we’re using the same id & src naming
scheme (and image naming scheme) for each one.
You’ll see how this is going to work in a bit...

If you give this a quick test drive,
your page should look like this:

You’ll find all the images
in the chapter9 folder you
downloaded from http://
wickedlysmart.com/hfjs.

Get the images

http://wickedlysmart.com/hfjs
http://wickedlysmart.com/hfjs

you are here 4 395

asynchronous coding

Now we need to assign the same event handler
to each image’s onclick property
Now we have more images in the page, but we have more work to do. Right now you can click on
the first image (of the Mona Lisa) and see the unblurred image, but what about the other images?

We could write a new, separate handler function for each image, but, from the discussion so far you
know that would be tedious and wasteful. Here, have a look:

window.onload = init;
function init() {
 var image0 = document.getElementById("zero");
 image0.onclick = showImageZero;
 var image1 = document.getElementById("one");
 image1.onclick = showImageOne;
 ...
}
function showImageZero() {
 var image = document.getElementById("zero");
 image.src = "zero.jpg";
}
function showImageOne() {
 var image = document.getElementById("one");
 image.src = "one.jpg";
}
...

We could get each image element
from the page and assign a
separate click handler to each one.
We’d have to do this six times...
we’re only showing two here.

And we’d need six
different click handlers,
one for each image.

The other four would be set here.

And we’d need four more handler functions here.

What are the disadvantages of writing a separate handler
for each image? Check all that apply:

Lots of redundant code in
each handler.

If we need to change the code in
one handler, we’re probably going
to have to change them all.

Generates a lot of code. Hard to keep track of all the
images and handlers.

Hard to generalize for an
arbitrary number of images.

Harder for others to work on the
code.

396 Chapter 9

using the same event handler for multiple events

function init() {

 var image = document.getElementById("zero");

 image.onclick = showAnswer;

 var images = document.getElementsByTagName("img");

 for (var i = 0; i < images.length; i++) {

 images[i].onclick = showAnswer;

 }

};

Clearly writing a handler for each image isn’t a good way to solve this problem. So what
we’re going to do instead is use our existing handler, showAnswer, to handle all of the click
events for all the images. Of course, we’ll need to modify showAnswer a little bit to make
this work. To use showAnswer for all the images we need to do two things:

How to reuse the same handler for all the images

We’ll get rid of the old code to get
image “zero” and set its handler.

Now we’re getting elements from
the page using a tag name, img. This
finds every image in the page and
returns them all. We store the
resulting images in the images variable.

Then we iterate over the images,
and assign the showAnswer click
handler to each image in turn. Now
the onclick property of each image
is set to the showAnswer handler.

Assign the showAnswer click handler function
to every image on the page.

Rework showAnswer to handle unblurring any
image, not just zero.jpg.

1

2

Here’s our first hurdle: in the current code we use the getElementById method to grab
a reference to image “zero”, and assign the showAnswer function to its onclick property.
Rather than hardcoding a call to getElementById for each image, we’re going to show
you an easier way: we’ll grab all the images at once, iterate through them, and set up the
click handler for each one. To do that we’ll use a DOM method you haven’t seen yet:
document.getElementsByTagName. This method takes a tag name, like img or p or
div, and returns a list of elements that match it. Let’s put it to work:

And we’d like to do both these things in a generalized way that works even if we add more
images to the page. In other words, if we write the code right, we should be able to add images
to the page (or delete images from the page) without any code changes. Let’s get started.

Assigning the click handler to all images on the page

you are here 4 397

asynchronous coding

document.getElementsByTagName Up Close

var images = document.getElementsByTagName("img");

The document.getElementsByTagName method works a lot like document.getElementById,
except that instead of getting an element by its id, we’re getting elements by tag name, in
this case the tag name “img”. Of course, your HTML can include many elements, so this
method may return many elements, or one element, or even zero elements, depending on how
many images we have in our page. In our image game example, we have six elements,
so we’ll get back a list of six image objects.

What we get back is a list of element
objects that match the specified tag name.

Notice the “s” here. That means
we might get many elements back.

Put the tag name in
quotes here (and don’t
include the < and >!).

What’s returned is an array-like list of objects. It’s not exactly an array but has qualities similar to an array.

Q: You said getElementsByTagName
returns a list. Do you mean an array?

A: It returns an object that you can treat
like an array, but it’s actually an object called
a NodeList. A NodeList is a collection of
Nodes, which is just a technical name for
the element objects that you see in the DOM
tree. You can iterate over this collection by
getting its length using the length property,
and then access each item in the NodeList
using an index with the bracket notation, just
like an array. But that’s pretty much where
the similarities of a NodeList and an array
end, so beyond this, you’ll need to be careful
in how you deal with the NodeList object.
You typically won’t need to know more about
NodeList until you want to start adding and
removing elements to and from the DOM.

Q: So I can assign a click handler to
any element?

A: Pretty much. Take any element on the
page, get access to it, and assign a function
to its onclick property. Done. As you’ve
seen, that handler might be specific to that
one element, or you might reuse a handler
for events on many elements. Of course
elements that don’t have a visual presence
in your page, like the <script> and <head>
elements, won’t support events like the click
event.

Q: Do handler functions ever get
passed any arguments?

A: Ah, good question, and very timely.
They do, and we’re just about to look at
the event object that gets passed to some
handlers.

Q: Do elements support other types of
events? Or is the click the only one?

A:There are quite a few others; in fact,
you’ve already seen another one in the code
of the battleship game: the keypress event.
There, an event handler function was called
whenever the user pressed Enter from the
form input. We’ll take a look at a few other
event types in this chapter.

398 Chapter 9

conversation about the event object

Judy: Yes I do. Whenever the click event handler is called,
it’s passed an event object. You can use that object to find out
details about the event.

Joe: Like which image was clicked on?

Judy: Well, more generally, the element on which the event
occurred, which is known as the target.

Joe: What’s the target?

Judy: Like I said, it’s the element that generated the event. Like if you
click on a specific image, the target will be that image.

Joe: So if I click on the image with the id “zero”, then the target will be set to that image?

Judy: More precisely, the element object that represents that image.

Joe: Come again?

Judy: Think of the element object as exactly the same thing you get if you call document.
getElementById with a value of “zero”. It’s the object that represents the image in the DOM.

Joe: Okay, so how do we get this target? It sounds like that’s what we need to know which image
was clicked on.

Judy: The target is just a property of the event object.

Joe: Great. That sounds perfect for showAnswer. We’ll be done in a snap… Wait, so showAnswer
is passed the event object?

Judy: That’s right.

Joe: So how did our code for the showAnswer function work up until now? It’s being passed this
event object, but we don’t have a parameter defined for the event object in the function!

Judy: Remember, JavaScript lets you ignore parameters if you want.

Joe: Oh, right.

Judy: Now Joe, don’t forget, you’ll need to figure out how to change the src of the image to the
correct name for the unblurred version. Right now we’re assuming the name of the unblurred
image is “zero.jpg”, but that won’t work any more.

Joe: Maybe we can use the id attribute of the image to figure out the unblurred image name. The
ids of all the images match the names of the unblurred version of each image.

 Judy: Sounds like a plan!

Okay Judy, now we have a single event
handler, showAnswer, to handle clicks on all the

images. You said you know how to tell which image
was clicked on when showAnswer is called?

you are here 4 399

asynchronous coding

When the click handler is called, it’s passed an event object—and in fact, for most
of the events associated with the document object model (DOM) you’ll be passed
an event object. The event object contains general information about the event,
such as what element generated the event and what time the event happened. In
addition, you’ll get information specific to the event, so if there was a mouse click,
for instance, you’ll get the coordinates of the click.

Let’s step through how event objects work:

How the event object works

function showAnswer(eventObj) {

 ...

}

Event

“

“

“

“

You click on an image...

...which causes an event object
to be created...

In the handler, you can use the event object to determine
things about the event, like what type of event occurred,
and which element generated the event, and so on.

So, what is in an event object? Like we said, both general and specific
information about the event. The specific information depends on the type
of the event, and we’ll come back to that a bit later. The general information
includes the target property that holds a reference to the object that
generated the event. So, if you click on a page element, like an image, that’s
the target, and we can access it like this:

function showAnswer(eventObj) {

 var image = eventObj.target;

}

The target tells
us what element
generated the
event.

...that is then passed
to the event handler.

There are other kinds of events
too (that is, other than DOM
events), and we’ll see an example
later in the chapter...

Take our game as an example.

which causes a click event...

 If you’re
running IE8 or
older, check
the appendix.
With older versions of IE, you need to set up the event object a little differently.

400 Chapter 9

exercise for the event object

I hold the object on which the event occurred. I
can be different kinds of objects, but most often
I’m an element object.

You’ve already seen that the event object (for DOM events) has properties that give you more
information about the event that just happened. Below you’ll find other properties that the
event object can have. Match each event object property to what it does.

I’m a string, like “click” or “load”, that tells you
what just happened.

Want to know when your event happened? I’m
the property for you.

I’ll tell you what key the user just pressed.

Want to know how far from the left side of the
browser window the user clicked? Use me.

Want to know how far from the top of the
browser window the user clicked? Use me.

Using a touch device? Then use me to find out
how many fingers are touching the screen.

target

type

timeStamp

keyCode

clientX

clientY

touches

you are here 4 401

asynchronous coding

function showAnswer(eventObj) {

 var image = eventObj.target;

 var name = image.id;

 name = name + ".jpg";

 image.src = name;

}

The event object’s target property
is a reference to the image element
that was clicked.

We can then use the id property of that object to get the name of the unblurred image.

Notice that the value of each image’s id corresponds to the name of the unblurred image
(minus the “.jpg” extension). Now, if we can access this id, then we can simply take that
name and add on “.jpg” to create the name of the corresponding unblurred image. Once
we have that we can change the image src property to the unblurred version of the image.
Let’s see how:

Putting the event object to work

<!doctype html>

 ...

<body>

</body>

</html>

Each of the images has an id, and the
id corresponds to the unblurred image
name. So the image with id “zero” has
an unblurred image of “zero.jpg”. And
the image with id “one” has an unblurred
image of “one.jpg” and so on...

Here’s the HTML again.

So, now that we’ve learned a little more about events—or more specifically, how the event
object is passed to the click handler—let’s figure out how to use the information in the event
object to deblur any image on the page. We’ll start by revisiting the HTML markup.

And finally, we’ll set the src of the image to that name.

Remember you’re getting passed an event
object each time an image is clicked on.

As you know, once you change the src property of the image, the
browser will immediately retrieve that new image and display it in
the page in place of the blurred version.

402 Chapter 9

testing the image game

Test drive the event object and target
Make sure you’ve updated all the code in your “image.html” file, and take it for
a test drive. Guess the image, click, and see the unblurred version be revealed.
Think about how this app is designed not as a top-to-bottom running program,
but purely as a set of actions that result from an event being generated when you
click on an image. Also think about how you handled the events on all the images
with one piece of code that’s smart enough to know which image was clicked on.
Play around. What happens if you click twice? Anything at all? Now we can click on any

of the images and see the
unblurred version. How well
did you do?

What if you want to have an image
become blurred again a few
seconds after you’ve revealed the
answer. How might that work?

Q: Does the onload event handler get passed an
event object too?

A: It does, and it includes information like the target,
which is the window object, the time it happened, and the
type of the event, which is just the type “load”. It’s safe to say
you don’t typically see the event object used much in load
handlers because there really isn’t anything that is useful in
it for this kind of event. You’re going to find that sometimes
the event object will be useful to you, and sometimes it won’t,
depending on the type of event. If you’re unsure what the
event object contains for a specific kind of event, just grab a
JavaScript reference.

you are here 4 403

asynchronous coding

Head First: Hey Browser, it’s always good to have your
time. We know how busy you are.

Browser: My pleasure, and you’re right, managing all
these events keeps me on my toes.

Head First: Just how do you manage them anyway?
Give us a behind-the-scenes look at the magic.

Browser: As you know, events are almost continually
happening. The user moves the mouse around, or makes a
gesture on a mobile device; things arrive over the network;
timers go off… it’s like Grand Central. That’s a lot to
manage.

Head First: I would have assumed you don’t need to
do much unless there happens to be a handler defined
somewhere for an event?

Browser: Even if there’s no handler, there’s still work to
do. Someone has to grab the event, interpret it, and see if
there is a handler waiting for it. If there is, I have to make
sure that handler gets executed.

Head First: So how do you keep track of all these
events? What if lots of events are happening at the same
time? There’s only one of you after all.

Browser: Well, yes, lots of events can happen over a
very short amount of time, sometimes too fast for me to
handle all in real time. So what I do is throw them all on a
queue as they come in. Then I go through the queue and
execute handlers where necessary.

Head First: Boy, that sounds like my days as a short-
order cook!

Browser: Sure, if you had orders coming in every
millisecond or so!

Head First: You have go through the queue one by one?

Browser: I sure do, and that’s an important thing to
know about JavaScript: there’s one queue and one “thread
of control,” meaning there is only one of me going
through the events one at a time.

Head First: What does that really mean for our readers
learning JavaScript?

Browser: Well, say you write a handler and it requires a
lot of computation—that is, something that takes a long
time to compute. As long as your handler is chugging
along computing, I’m sitting around waiting until it’s
done. Only then can I continue with the queue.

Head First: Oh wow. Does that happen a lot, that is, you
end up waiting on slow code?

Browser: It happens, but it also doesn’t take long
for a web developer to figure out the page or app isn’t
responsive because the handlers are slow. So, it’s not a
common problem as long as the web developers know
how event queues work.

Head First: And now all our readers do! Now, back to
events, are there lots of different kinds of events?

Browser: There are. We’ve got network-based events,
timer events, DOM events related to the page and a few
others. Some kinds of events, like DOM events, generate
event objects that contain a lot more detail about the
event—like a mouse click event will have information
about where the user clicked, and a keypress event will
have information about which key was pressed, and so on.

Head First: So, you spend a lot of time dealing with
events. Is that really the best use of your time? After all,
you’ve got to deal with retrieving, parsing and rendering
pages and all that.

Browser: Oh, it’s very important. These days you’ve
got to write code that makes your pages interactive and
engaging, and for that you need events.

Head First: Oh for sure, the days of simple pages are
gone.

Browser: Exactly. Oh shoot, this queue is about to
overflow. Gotta run!

Head First: Okay… until next time!

Events Exposed
This week’s interview:
Talking to the browser about events

404 Chapter 9

the event queue

A page loaded

A user clicked

A timer just went off

A form was submitted

A user clicked

The user clicked again

Another timer went off

A form was submitted

Data arrives from network

Event queue

You already know that the browser maintains a queue of events. And
that behind the scenes the browser is constantly taking events off that
queue and processing them by calling the appropriate event handler for
them, if there is one.

Events and queues

It’s important to know that the browser processes these events one at a time,
so, where possible, you need to keep your handlers short and efficient. If
you don’t, the whole event queue could stack up with waiting events, and
the browser will get backed up dealing with them all. The downside to you?
Your interface could really start to become slow and unresponsive.

Another user click

Watch out! I’m
working my way through these

events one at a time. For each
event I call its handler if there

is one.

Heads up, a new event
is coming in. The user just

clicked on another element.

The browser steps
through the queue
from oldest to newest,

processing each even
t.

If things get really bad you’ll get
the slow script dialog box, which
means the browser is giving up!

The browser.

you are here 4 405

asynchronous coding

Here’s the map and X
marks the spot!

Your code will
display the
coordinates below
the map.

After your code is written, just move the mouse over the X to see the coordinates of the treasure.

Ahoy matey! You’ve got a treasure map in your possession and we
need your help in determining the coordinates of the treasure. To do
that you’re going to write a bit of code that displays the coordinates
on the map as you pass the mouse over the map. We’ve got some of
the code on the next page, but you’ll have to help finish it.

P.S. We highly
encourage you to
do this exercise,
because we don’t
think the pirates
are going to be
too happy if they
don’t get their
coordinates... Oh,
and you’ll need this to complete your
code:

clientX, clientY: the x (and y) position in pixels of your mouse from the left side (and top) of the browser window.

screenX, screenY: the x (and y) position in pixels of your mouse from the left side (and top) of the user’s screen.

pageX, pageY: the x (and y) position in pixels of your mouse from the left side (and top) of the browser’s page.

The mousemove event

The mousemove event notifies your handler when a mouse moves over a particular element. You set up your

handler using the element’s onmousemove property. Once you’ve done that you’ll be passed an event object

that provides these properties:

406 Chapter 9

exercise for the mousemove event

<!doctype html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>Pirates Booty</title>

 <script>

 window.onload = init;

 function init() {

 var map = document.getElementById("map");

 }

 function showCoords(eventObj) {

 var coords = document.getElementById("coords");

 coords.innerHTML = "Map coordinates: "

 + x + ", " + y;

 }

 </script>

</head>

<body>

 <p id="coords">Move mouse to find coordinates...</p>

</body>

</html>

Blimey! The code is below. So far it includes the map in the page
and creates a paragraph element to display the coordinates. You
need to make all the event code work. Good luck. We don’t want to
see you go to Davy Jones’ locker anytime soon...

Set up your handler here.

Grab the coordinates here.

When you’re done get this code in a real
page, load it,

and write your coordinates here.

you are here 4 407

asynchronous coding

Even more events
So far we’ve seen three types of events: the load event, which occurs when the browser
has loaded the page; the click event, which occurs when a user clicks on an element in
the page and the mousemove event, which occurs when a user moves the mouse over
an element. You’re likely to run into many other kinds of events too, like events for data
arriving over the network, events about the geolocation of your browser, and time-
based events (just to name a few).

For all the events you’ve seen, to wire up a handler, you’ve always assigned the handler
to some property, like onload, onmouseover or onclick. But not all events work like
this—for example, with time-based events, rather than assigning a handler to a property,
you call a function, setTimeout, instead and pass it your handler.

Here’s an example: say you want your code to wait five seconds before doing something.
Here’s how you do that using setTimeout and a handler:

function timerHandler() {

 alert("Hey what are you doing just sitting there staring at a blank screen?");

}

setTimeout(timerHandler, 5000);

First we write an event handler. This
is the handler that will be called
when the time event has occurred.

All we’re doing in this event handler is showing an alert.

And here, we call setTimeout, which takes two arguments:
the event handler and a time duration (in milliseconds).

Using setTimeout is
a bit like setting a
stop watch.

Test drive your timer

Don’t just sit there! It’s time to test this code! Throw this code into a basic
HTML page, and load the page. At first you won’t see anything, but after
five seconds you’ll see the alert.

Be patient, wait five seconds and you'll see
what we see. Now if you've been sitting there
a couple minutes you might want to give your
machine a little kick... just kidding, you’d
actually better check your code.

Here we’re asking
the timer to wait
5000 milliseconds
(5 seconds).

And then call the
handler timerHandler.

How would you make
the alert appear every
5 seconds, over and
over?

408 Chapter 9

a setTimeout handler

..., 6, 5, 4, 3, 2, 1, 0.

How setTimeout works
Let’s step through what just happened.

When the page loads we do
two things: we define a handler
named timerHandler, and we
call setTimeout to create a time
event that will be generated in
5000 milliseconds. When the
time event happens, the handler
will be executed.

1

function timerHandler() {

 alert("Hey what are you doing just sitting there staring at a blank screen?");

}

Okay, it’s go time. I’ve
got a timer that goes off in 5000

milliseconds, and I’ve got a handler to
call when that happens.

The browser continues its
normal job as the timer counts
down in milliseconds.

2

When the browser’s countdown gets to
zero, the browser calls the handler.

3

That’s 5000
milliseconds, the

timer is done, let’s
call that handler.

The handler
has been called. I’m

finished with that timer.

The handler is called, resulting in an alert
being created and displayed in the browser.

4

5000, 4999, 4998...

The browser tracks
all timers (yes you can
have more than one at
a time) along with the
corresponding handlers
it needs to call.

The time event is triggered when the countdown is complete. The browser executes the event handler by calling the function you passed in.

When the browser executes our
event handler, we see the alert!

Your browser
manages timers.

you are here 4 409

asynchronous coding

Good catch! Remember we said up front that in this chapter
you’re going to feel like you aren’t in Kansas anymore? Well this
is that point in the movie where everything goes from black and
white to color. Back to your question; yes, we defined a function
and then took that function, and passed it to setTimeout (which
is actually a method).

Why would we do this and what does it mean? Let’s think through
this: the setTimeout function essentially creates a countdown
timer and associates a handler with that timer. That handler is
called when the timer hits zero. Now to tell setTimeout what
handler to call, we need to pass it a reference to the handler function.
setTimeout stores the reference away to use later when the timer
has expired.

If you’re saying “That makes sense,” then great. On the other
hand, you might be saying “Excuse me? Pass a function to a
function? Say what?” In that case, you probably have experience
with a language like C or Java, where you don’t just go around passing
functions to other functions like this… well, in JavaScript, you do, and
in fact, being able to pass functions around is incredibly powerful,
especially when we’re writing code that reacts to events.

More likely at this point you’re saying, “I think I sort of get it,
but I’m not sure.” If so, no worries. For now, just think of this
as giving setTimeout a reference to the handler it’s going to
need to invoke when the timer expires. We’re going to be talking
a lot more about functions and what you can do with them (like
passing them to other functions) in the next chapter. So just go
with it for now.

With setTimeout, did I
misunderstand, or did you pass
a function to another function?

setTimeout(timerHandler, 5000);

Here it is, a reference to a function passed
to setTimeout (another function).

410 Chapter 9

questions about events

Q: Is there a way to stop setInterval?

A: There is. When you call setInterval, it returns a timer object.
You can pass that timer object to another function, clearInterval, to
stop the timer.

Q: You said setTimeout was a method, but it looks like a
function. Where’s the object it’s a method of?

A: Good catch. Technically we could write window.setTimeout, but
because the window object is considered the global object, we can
omit the object name, and just use setTimeout, which we’ll see a lot
in practice.

Q: Can I omit window on the window.onload property too?

A: You can, but most people don’t because they are worried
onload is a common enough property name (other elements can have
the onload property too) that not specifying which onload property
might be confusing.

Q: With onload I’m assigning one handler to an event. But
with setTimeout, I seem to be able to assign as many handlers
as I want to as many timers as I want?

A: Exactly. When you call setTimeout, you are creating a timer
and associating a handler with it. You can create as many timers as
you like. The browser keeps track of associating each timer with its
handler.

Q: Are there other examples of passing functions to
functions?

A: Lots of them. In fact, you’ll find that passing around functions
is fairly common in JavaScript. Not only do lots of built-in functions,
like setTimeout and setInterval, make use of function passing, but
you’ll also discover there’s a lot code you’ll write yourself that accepts
functions as arguments. But that’s only part of the story, and in the
next chapter we’re going to dive deep into this topic and discover that
you can do all sort of interesting things with functions in JavaScript.

var tick = true;
function ticker() {
 if (tick) {
 console.log("Tick");
 tick = false;
 } else {
 console.log("Tock");
 tick = true;
 }
}
setInterval(ticker, 1000);

Take a look at the code below and see if you can figure out what
setInterval does. It’s similar to setTimeout, but with a slight twist.
Check your answer at the end of the chapter.

Here’s the output.

JavaScript console
Tick
Tock
Tick
Tock
Tick
Tock
Tick
Tock

Here’s the code.

Your analysis goes here.

you are here 4 411

asynchronous coding

Joe: That sounds cool… I bet you’re using
setTimeout?

Frank: That’s my plan, although I’m not sure
how to know which image to reblur.

Jim: What do you mean?

Frank: I have my code so that when you click on
an image and reveal it, I set up a timer that fires
in two seconds. When the timeout event fires, it

calls a new handler I wrote called reblur.

Joe: And in reblur, you need to know which image
to reblur?

Frank: Right. I’m not passing any arguments to the handler, it’s just
being called by the browser when the time expires, and so I have no way to tell
my handler the correct image to reblur. I’m kinda stuck.

Jim: Have you looked at the setTimeout documentation?

Frank: No, I know only what Judy told me: that setTimeout takes a function
and a time duration in milliseconds.

Jim: You can add an argument to the call to setTimeout that is passed on to the
handler when the time event fires.

Frank: Oh that’s perfect. So I can just pass in a reference to the correct image to
reblur and that will get passed on to the handler when it is called?

Jim: You got it.

Frank: See what a little talking through code gets ya Joe?

Joe: Oh for sure. Let’s give this a try…

Hey guys I’m trying to get
this image app finished. I’m

working on getting the images to
reblur a couple of seconds after
the user clicks on them.

FrankJim
Joe

412 Chapter 9

using setTimeout in the image game

window.onload = function() {

 var images = document.getElementsByTagName("img");

 for (var i = 0; i < images.length; i++) {

 images[i].onclick = showAnswer;

 }

};

function showAnswer(eventObj) {

 var image = eventObj.target;

 var name = image.id;

 name = name + ".jpg";

 image.src = name;

 setTimeout(reblur, 2000, image);

}

function reblur(image) {

 var name = image.id;

 name = name + "blur.jpg";

 image.src = name;

}

Finishing the image game
Now it’s time to put the final polish on the image game. What we want is for
an image to automatically reblur a few seconds after it’s revealed. And, as
we just learned, we can pass along an argument for the event handler when
we call setTimeout. Let’s check out how to do this:

 setTimeout does not support
extra arguments in IE8 and
earlier.

That’s right. This code is not going to
work for you or your users if you’re using IE8 or earlier. But you shouldn’t be using IE8 for this book anyway! That said, you’ll see another way to do this a little later in the book that will take care of this for IE8 (and earlier).

This code is just as we wrote it
before. No changes here...

But now when we show the user the
clear image, we also call setTimeout
to set up an event that will fire in
two seconds.

We'll use reblur (below) as our
handler, and pass it 2000
milliseconds (two seconds) and also
an argument, the image to reblur.

Now when this handler is called, it
will be passed the image.

The handler can take the image, get
the id of the image, and use that to
create the name of the blurred image.
When we set the src of the image to
that name, it will replace the clear
image with the blurred image.

you are here 4 413

asynchronous coding

Q: Can I pass just one argument to the
setTimeout handler?

A: No you can actually pass as many as
you like: zero, one or more.

Q: What about the event object?
Why doesn't setTimeout pass the event
handler one?

A: The event object is mostly used with
DOM-related event handlers. setTimeout
doesn't pass any kind of event object to
its handler, because it doesn’t occur on a
specific element.

Q: showAnswer is a handler, and yet it
sets up a new handler, reblur, in its code.
Is that right?

A: You’ve got it. You’ll actually see this
fairly often in JavaScript. It's perfectly normal
to see a handler set up additional event
handlers for various events. And this is the
style of programming we were referring to in
the beginning of the chapter: asynchronous
programming. To create the image game we
didn’t just translate an algorithm that runs
top down. Rather we’re hooking up event
handlers to handle the execution of the
game as events occur. Trace through a few
different examples of clicking on images and
the various calls that get made to reveal and
reblur the image.

Q: So there are DOM-based events,
and timer events… are there lots of
different kinds of events?

A: Many of the events you deal with
in JavaScript are DOM events (like when
you click on an element), or timer events
(created with setTimeout or setInterval).
There are also API-specific events, like
events generated by JavaScript APIs
including Geolocation, LocalStorage, Web
Workers, and so on (see Head First HTML5
Programming for more on these). And finally,
there is a whole category of events related to
I/O: like when you request data from a web
service using XmlHttpRequest (again, see
Head First HTML5 Programming for more),
or Web Sockets.

Test driving the timer
That wasn’t much code to add, but it sure makes a big difference in how
the image game works. Now when you click, behind the scenes, the browser
(through the timer events) is tracking when it needs to call the reblur handler,
which blurs the image again. Note how asynchronous this feels—you’re in control
of when the images are clicked, but behind-the-scenes code is being invoked
at various times based on the click event and on timer events. There’s no über
algorithm driving things here, controlling what gets called and when; it’s just a
lot of little pieces of code that set up, create and react to events.

Now when you click, you'll see
the image revealed, and then
blurred again two seconds later.

Give this a good QA testing by
clicking on lots of images in quick
succession. Does it always work?
Refer back to the code and
wrap your brain around how the
browser keeps track of all the
images that need to be reblurred.

414 Chapter 9

using the mouseover event

Hey guys, our desktop
users would like to be able to

pass their mouse over the image
without clicking to reveal the
unblurred image. Can we get that

implemented?

Judy: To make this work you’ll want to make use of the mouseover event. You can
set a handler for this event on any element with the onmouseover property:

 myElement.onmouseover = myHandler;

Judy: Also, the mouseout event tells you when the mouse leaves your element. You
can set its handler with the onmouseout property.

Rework your code so that an image is revealed and reblurred by
moving your mouse over and out of the image elements. Be sure to
test your code, and check your answer at the end of the chapter:

JavaScript code goes here.

you are here 4 415

asynchronous coding

<!doctype html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>Don't resize me, I'm ticklish!</title>

<script>

 function resize() {

 var element = document.getElementById("display");

 element.innerHTML = element.innerHTML + " that tickles!";

 }

</script>

</head>

<body>

<p id="display">

 Whatever you do, don't resize this window! I'm warning you!

</p>

<script>

 window.onresize = resize;

</script>

</body>

</html>

With the image game complete, Judy wrote some code to review
in the weekly team meeting. In fact, she started a little contest,
awarding the first person to describe what the code does with
lunch. Who wins? Jim, Joe, Frank? Or you?

Put your notes here describing what this code does.
What events are involved? How is the handler set
up? And when does the event happen? Don't just
make notes, give this a try in your browser.

416 Chapter 9

code lab on functions

We’ve found some highly suspicious code we need your help testing. While we’ve already done an
initial analysis on the code and it looks like 100% standard JavaScript, something about it looks odd.
Below you’ll find two code specimens. For each specimen you’ll need to identify what seems odd
about the code, test to make sure the code works, and then try to analyze what exactly it does. Go
ahead and make your notes on this page. You’ll find our analysis on the next page.

CODE LABORATORY

DO try this at HOME!

window.onload = function() {

 alert("The page is loaded!");

}

Specimen #2

var addOne = function(x) {
 return x + 1;
 } ;
var six = addOne(5);

Specimen #1

you are here 4 417

asynchronous coding

CODE LABORATORY: ANALYSIS

DO try this at HOME!

window.onload = function() {

 alert("The page is loaded!");

}

Specimen #2

var addOne = function(x) {

 return x + 1;

 } ;

var six = addOne(5);

Specimen #1

At first glance this code appears
to simply define a function that
adds the number one to any
parameter and return it.
Looking closer, this isn’t a normal
function definition. Rather, we
are declaring a variable and
assigning to it a function that
appears to be missing its name.
Further, we’re invoking the
function with the variable name,
not a name associated with the
function as part of its definition.
Odd indeed (although it reminds
us a bit of how object methods
are defined).

Here we appear to have something
similar. Instead of defining
a function separately and
assigning its name to the window.
onload property, we’re assigning
a function directly to that
property. And again, the function
doesn’t define its own name.

We added this code to an HTML page and tested it. The code appears to work as you
might expect. With specimen #1, when the function assigned to addOne is invoked, we get
a result that is one greater than the number we pass in, which seems right. With specimen
#2, when we load the page, we get the alert “The page is loaded!”.
From these tests it would appear as if functions can be defined without names, and used
in places where you’d expect an expression.

418 Chapter 9

chapter summary

 � Most JavaScript code is written to react to events.

 � There are many different kinds of events your code can
react to.

 � To react to an event, you write an event handler
function, and register it. For instance, to register a
handler for the click event, you assign the handler
function to the onclick property of an element.

 � You’re not required to handle any specific event. You
choose to handle the events you’re interested in.

 � Functions are used for handlers because functions
allow us to package up code to be executed later (when
the event occurs).

 � Code written to handle events is different from code
that executes top to bottom and then completes. Event
handlers can run at any time and in any order: they are
asynchronous.

 � Events that occur on elements in the DOM (DOM
events) cause an event object to be passed to the event
handler.

 � The event object contains properties with extra
information about the event, including the type (like
“click” or “load”) and the target (the object on which the
event occurred).

 � Older versions of IE (IE 8 and older) have a different
event model from other browsers. See the appendix for
more details.

 � Many events can happen very close together. When too
many events happen for the browser to handle them as
they occur, the events are stored in an event queue (in
the order in which they occurred) so the browser can
execute the event handlers for each event in turn.

 � If an event handler is computationally complex, it will
slow down the handling of the events in the queue
because only one event handler can execute at a time.

 � The functions setTimeout and setInterval are used
to generate time-based events after a certain time has
passed.

 � The method getElementsByTagName returns zero,
one or more element objects in a NodeList (which is
array-like, so you can iterate over it).

What does it all
mean? Stick around; we’ll

reveal our findings on these
odd functions in the next

chapter...

you are here 4 419

asynchronous coding

Event Soup

We’ve scratched the surface
of events, using load, click,

mousemove, mouseover, mouseout,
resize and timer events. Check out
this delicious soup of events you’ll
encounter and will want to explore

in your web programming.

click
load keypress

mouseover mouseout

dragsta
rt

drop

play

pause

unload

resize

touchstart

touchend

Get this even
t

when you click
 (or

tap) in a web page.

The event you get when
the browser has completed
loading a web page.

This event is generated when you close the browser window, or navigate away from a web page.
Whenever you resize
your browser window,
this event is generated.

Got <video> i
n your page?

You’ll get th
is event when

you click th
e play butto

n.

And this one when you
click the pause button.

This event is generated every time you press a key.

When you put
your mouse over
an element, you’ll
generate this event.

And you’ll generate this
event when you move your
mouse off an element.

If you drag an
 element

in the page, yo
u’ll

generate this e
vent.

You’ll get this event
 when

you drop an element
you’ve been dragging

.

On touch devices, you’ll generate a touchstart event when you touch and hold an element.

And you’ll get this event when you stop touching.

mousemove
When you move your mouse over an element, you’ll generate this event.

420 Chapter 9

javascript crossword

1 2

3 4 5

6

7 8 9

10 11 12

13

14 15

16

17 18

19 20

21

Across
1. Use this property of the event object to

know when an event happened.
3. When you click your mouse, you'll generate a

_______ event.
8. Events are handled ______________.

12. 5000 milliseconds is _______ seconds.
13. Use this method to get multiple elements

from the DOM using a tag name.
14. A function designed to react to an event is

called an event _______.
15. The setTimeout method is used to create a

______ event.
16. The browser has only one _________ of

control.

Down
1. You'll generate this event if you touch your

touch screen device.
2. zero.jpg is the ________.
4. When you begin programming with events,

you might feel like you're not in _________
any more.

5. JavaScript allows you to pass a _______ to
a function.

6. If too many events happen close together,
the browser stores the events in an event
________.

7. Events are generated for lots of things, but
not for baking __________.

JavaScript cross
Practice your event reaction time by doing this crossword.

ACROSS
1. Use this property of the event object to know when an event
happened.
3. When you click your mouse, you’ll generate a _______ event.
8. Events are handled ______________.
12. 5000 milliseconds is _______ seconds.
13. Use this method to get multiple elements from the DOM using
a tag name.
14. A function designed to react to an event is called an event
_______.
15. The setTimeout method is used to create a ______ event.
16. The browser has only one _________ of control.
17. The browser can only execute one event __________ at a
time.
19. The event object for a mouseover event has this property
for the X position of the mouse from the left side of the browser
window.
20. The event _______ is passed to an event handler for DOM
events.
21. To pass an argument to a timer event handler, pass it as the

________ argument to setTimeout.

DOWN
1. You’ll generate this event if you touch your touch screen device.
2. zero.jpg is the ________.
4. When you begin programming with events,
you might feel like you’re not in _________
any more.
5. JavaScript allows you to pass a _______ to
a function.
6. If too many events happen close together,
the browser stores the events in an event

________.
7. Events are generated for lots of things, but
not for baking __________.
9. To make a time event happen over and over, use _________.
10. The window ______ property is for handling a page loaded
event.
11. _____ is super ticklish.
14. To assign an event handler for a time event,
pass the _______ to setTimeout as the first
argument.
15. How you know which image was clicked on in
the image game.
18. A program with code to handle events is not
this.

you are here 4 421

asynchronous coding

Pick two of the events above. If the browser could notify
your code when these events occurred, what cool or
interesting code might you write?

Let’s take an event that notifies us when a user submits a form.
If we’re notified of this event, then we could get all the data
the user filled into the form and check to make sure it’s valid (e.g.
the user put something that looks like a phone number into a phone
number field, or filled out the required fields). Once we’ve done
that check, then we could submit the form to the server.
How about the mouse movement event? If we’re notified whenever
a user moves the mouse, then we could create a drawing application
right in the browser.
If we’re notified when the user scrolls down the page, we could do
interesting things like reveal an image as they scroll down.

422 Chapter 9

exercise solutions

Below, you’ll find the image game code. Your job is to play like
you’re the browser and to figure out what you need to do after each

event. After you’ve done the exercise look at the end of the
chapter to see if you got everything. Here’s our solution.

BE the Browser Solution

window.onload = init;
function init() {
 var image = document.getElementById("zero");
 image.onclick = showAnswer;
}

function showAnswer() {
 var image = document.getElementById("zero");
 image.src = "zero.jpg";
}

First define the functions init and showAnswer
Set load handler to init

load handler, init, is called
we get the image with id “zero”
set image’s click handler to showAnswer

showAnswer is called
we get the image with id “zero”
we set the src attribute to “zero.jpg”

When page is
being loaded...

When page load
event occurs...

When image
click event
occurs...

you are here 4 423

asynchronous coding

I hold the object on which the event occurred. I
can be different kinds of objects, but most often
I’m an element object.

You’ve already seen that the event object (for DOM events) has properties that give you more
information about the event that just happened. Below you’ll find other properties that the
event object can have. Match each event object property to what it does.

I’m a string, like “click” or “load”, that tells you
what just happened.

Want to know when your event happened? I’m
the property for you.

I’ll tell you what key the user just pressed.

Want to know how far from the left side of the
browser window the user clicked? Use me.

Want to know how far from the top of the
browser window the user clicked? Use me.

Using a touch device? Then use me to find out
how many fingers are touching the screen.

target

type

timeStamp

keyCode

clientX

clientY

touches

SOlUTion

Note: timeStamp is not supported
in older versions of IE.

424 Chapter 9

exercise solutions

<!doctype html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>Pirates Booty</title>

 <script>

 window.onload = init;

 function init() {

 var map = document.getElementById("map");

 }

 function showCoords(eventObj) {

 var coords = document.getElementById("coords");

 coords.innerHTML = "Map coordinates: "

 + x + ", " + y;

 }

 </script>

</head>

<body>

 <p id="coords">Move mouse to find coordinates...</p>

</body>

</html>

Ahoy matey! You’ve got a treasure map in your possession and we
need your help in determining the coordinates of the treasure. To do
that you’re going to write a bit of code that displays the coordinates on
the map as you pass the mouse over the map.

Blimey! The code is below. So far it includes the map in the page and
creates a paragraph element to display the coordinates. You need to
make all the event-based code works. Good luck. We don’t want to see
you go to Davy Jones’ locker anytime soon... And here’s our solution.

map.onmousemove = showCoords;

var x = eventObj.clientX;
var y = eventObj.clientY;

When we put our mouse right over
the X, we got the coordinates: 200, 190

you are here 4 425

asynchronous coding

var tick = true;

function ticker() {
 if (tick) {
 console.log("Tick");
 tick = false;
 } else {
 console.log("Tock");
 tick = true;
 }
}

setInterval(ticker, 1000);

Take a look at the code below and see if you can figure out what
setInterval does. It’s similar to setTimeout, but with a slight twist.

Here’s our solution:

Here’s the output.

JavaScript console
Tick
Tock
Tick
Tock
Tick
Tock
Tick
Tock

Here’s the code.

Your analysis goes here.

Just like setTimeout, setInterval also takes an event handler function as its first
argument and a time duration as its second argument.
But unlike setTimeout, setInterval executes the event handler multiple times... in fact
it keeps going. Forever! (Actually, you can tell it to stop, see below). In this example,
every 1000 milliseconds (1 second), setInterval calls the ticker handler. The ticker
handler is checking the value of the tick variable to determine whether to display “Tick”
or “Tock” in the console.
So setInterval generates an event when the timer expires, and then restarts the timer.

var t = setInterval(ticker, 1000);

clearInterval(t);

To stop an interval timer, save the result
of calling setInterval in a variable...

...and then pass that to clearInterval
later, when you want to stop the timer.

426 Chapter 9

exercise solutions

Rework your code so that you can reveal and reblur an image by
passing your mouse over and out of the image elements. Be sure to
test your code. Here’s our solution:

 window.onload = function() {

 var images = document.getElementsByTagName("img");

 for (var i = 0; i < images.length; i++) {

 images[i].onclick = showAnswer;

 images[i].onmouseover = showAnswer;

 images[i].onmouseout = reblur;

 }

 };

 function showAnswer(eventObj) {

 var image = eventObj.target;

 var name = image.id;

 name = name + ".jpg";

 image.src = name;

 setTimeout(reblur, 2000, image);

 }

 function reblur(eventObj) {

 var image = eventObj.target;

 var name = image.id;

 name = name + "blur.jpg";

 image.src = name;

 }

First, we remove the assignment of the
event handler to the onclick property.
Then we add the showAnswer
event handler to the onmouseover
property of the image...
And now we're going to use reblur
as the handler for the mouseout
event (instead of as a timer event
handler). So we assign reblur to the
onmouseout property of the image.

We won't use the timer anymore to reblur the
image; instead, we'll reblur it when the user
moves the mouse out of the image element.

Now we're using reblur as an event handler for
the mouseout event, so to get the correct
image to reblur, we have to use the event
object. Just like in showAnswer, we'll use the
target property to get the image object. Once
we have that, the rest of reblur is the same.

you are here 4 427

asynchronous coding

<!doctype html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>Don't resize me, I'm ticklish!</title>

<script>

 function resize() {

 var element = document.getElementById("display");

 element.innerHTML = element.innerHTML + " that tickles!";

 }

</script>

</head>

<body>

<p id="display">

 Whatever you do, don’t resize this window! I'm warning you!

</p>

<script>

 window.onresize = resize;

</script>

</body>

</html>

With the image game complete, Judy wrote some
code to review in the weekly team meeting. In fact,
she started a little contest, awarding the first person
to describe what the code does with lunch. Who wins?
Jim, Joe, Frank? Or you?

We set up the resize event in the script at the
bottom of the page. Remember, this script won't run
until the page is fully loaded, so that makes sure we
don't set up the event handler too early.

When you resize the browser window, the resize
event handler is called, which updates the page by
adding new text content (“ that tickles”) to the
“display” paragraph.

The event we’re interested in is the resize event, so we
set up a handler function (named resize), and assign it
to the onresize property of the window.

Our event handler is named resize. When it’s called, it just
adds some text to the paragraph with the id “display”.

428 Chapter 9

exercise solutions

T
1

I M E S T A M
2

P
O O

C
3

L I C K
4

U F
5

N
A C U Q

6
A

C
7

A
8

S
9

Y N C H R O N O U S L Y
O E S S C E I
O T A T T U S
K O

10
J
11

I S A F
12

I V E A
I N I N R O

G
13

E T E L E M E N T S B Y T A G N A M E
S O E

H
14

A N D L E R T
15

I M E
T
16

H R E A D V A
N H

17
A N D L

18
E R

D L I G
L N E

C
19

L I E N T X O
20

B J E C T
R A

T
21

H I R D

Across
1. Use this property of the event object to

know when an event happened.
[TIMESTAMP]

3. When you click your mouse, you'll generate a
_______ event. [CLICK]

8. Events are handled ______________.
[ASYNCHRONOUSLY]

12. 5000 milliseconds is _______ seconds.
[FIVE]

13. Use this method to get multiple elements
from the DOM using a tag name.
[GETELEMENTSBYTAGNAME]

14. A function designed to react to an event is
called an event _______. [HANDLER]

Down
1. You'll generate this event if you touch your

touch screen device. [TOUCHSTART]
2. zero.jpg is the ________. [MONALISA]
4. When you begin programming with events,

you might feel like you're not in _________
any more. [KANSAS]

5. JavaScript allows you to pass a _______ to
a function. [FUNCTION]

6. If too many events happen close together,
the browser stores the events in an event
________. [QUEUE]

7. Events are generated for lots of things, but
not for baking __________. [COOKIES]

JavaScript cross Solution
Practice your event reaction time by doing this
crossword. Here’s our solution.

this is a new chapter 429

Liberated functions

10 first class functions

Know functions, then rock. Every art, craft, and discipline has a key

principle that separates the intermediate players from the rock star virtuosos—when

it comes to JavaScript, it’s truly understanding functions that makes the difference.

Functions are fundamental to JavaScript, and many of the techniques we use to

design and organize code depend on advanced knowledge and use of functions. The

path to learning functions at this level is an interesting and often mind-bending one,

so get ready... This chapter is going to be a bit like Willy Wonka giving a tour of the

chocolate factory—you’re going to encounter some wild, wacky and wonderful things

as you learn more about JavaScript functions.

Now that we
really know functions

we’re on easy street... days at
the country club...

We’ll spare you the
singing Oompa Loompas.

I think those functions
have done something to

your brains. We’re actually
in the middle of an empty

field, and I’m your neighbor
wearing a waiter costume.

430 Chapter 10

intro to function expressions

Serious Coding
A function reference is exactly
what it sounds like: a reference

that refers to a function. You can use a
function reference to invoke a function
or, as you’ll see, you can assign them to
variables, store them in objects, and pass
them to or return them from functions
(just like object references).

The mysterious double life of the function keyword
So far we’ve been declaring functions like this:

quack

function quack(num) {
 for (var i = 0; i < num; i++) {

 console.log("Quack!");

 }

}

quack(3);

There are no surprises here, but let’s get our terminology
down: formally, the first statement above is a function declaration,
which creates a function that has a name—in this case
quack—that can be used to reference and invoke the function.

So far so good, but the story gets more mysterious because, as
you saw at the end of the last chapter, there’s another way to
use the function keyword:

var fly = function(num) {
 for (var i = 0; i < num; i++) {

 console.log("Flying!");

 }

};

fly(3);

Now when we use the function keyword this way—that is,
within a statement, like an assignment statement—we call this
a function expression. Notice that, unlike the function declaration,
this function doesn’t have a name. Also, the expression results
in a value that is then assigned to the variable fly. What is that
value? Well, we’re assigning it to the variable fly and then later
invoking it, so it must be a reference to a function.

A standard function
declaration with the function
keyword, a name, a parameter
and a block of code.

This doesn’t look so standard: the function
doesn’t have a name, and it’s on the right
hand side of an assignment to a variable.

And we can invoke this function by using its name followed
by parentheses that enclose any needed arguments.

We can invoke this function too, this
time by using the variable fly.

function quack(num) {

 for (var i = 0; i < num; i++) {

 console.log("Quack!");

 }

}

you are here 4 431

first class functions

Function declarations versus function expressions
Whether you use a function declaration or a function expression you get the same thing: a function.
So what’s the difference? Is the declaration just more convenient, or is there something about
function expressions that makes them useful? Or are these just two ways to do the same thing?

At first glance, it might appear as if there isn’t a big difference between function declarations and
function expressions. But, actually, there is something fundamentally different about the two, and to
understand that difference we need to start by looking at how your code is treated by the browser at
runtime. So let’s drop in on the browser as it parses and evaluates the code in your page:

The browser.

Ah, great. This page
has some code to process.

var migrating = true;

var fly = function(num) {
 for (var i = 0; i < num; i++) {
 console.log("Flying!");
 }

};

function quack(num) {
 for (var i = 0; i < num; i++) {
 console.log("Quack!");
 }

}

if (migrating) {
 quack(4);
 fly(4);
}

The first thing I
always do is scan the code
for function declarations.

This variable declaration isn’t a
function declaration, so let’s keep
moving and ignore it for now.

Next we have a
function expression in
a statement. That’s
not a declaration...
let’s keep moving.

Ah, here’s a function
declaration. We need
to deal with that.
Let’s do that on the
next page....

After we deal with the declaration
above, we also won’t care about
this code because there aren’t any
function declarations here.

432 Chapter 10

how a function declaration is parsed

var migrating = true;

var fly = function(num) { for (var i = 0; i < num; i++) { console.log("Flying!"); }

};

function quack(num) { for (var i = 0; i < num; i++) { console.log("Quack!"); }

}

if (migrating) {
 quack(4);
 fly(4);
}

quack Here’s our function
stored away for later
use, such as when the
function gets invoked.

function quack(num) {
 for (var i = 0; i < num; i++) {
 console.log(“Quack!”);
 }
}

function quack(num) {
 for (var i = 0; i < num; i++) {
 console.log("Quack!");
 }
}

And, the function has
a name, quack, so I’ll set up a
variable named quack to hold
the function reference.

I’m going to grab the function and
stash it away so I can retrieve it
later when the function is invoked.

Ok, we’ve got a
function declaration, we
handle those before we do

anything else...

Parsing the function declaration
When the browser parses your page—before it evaluates any code—it’s
looking for function declarations. When the browser finds one, it creates
a function and assigns the resulting reference to a variable with the same
name as the function. Like this:

Here’s the function
declaration in this code.
Let’s see what the
browser’s going to do
with it...

you are here 4 433

first class functions

What’s next? The browser executes the code
Now that all the function declarations have been taken care of, the browser
goes back up to the top of your code and starts executing it, top to bottom.
Let’s check in on the browser at that point in the execution:

We start with a simple
variable assignment. We’ve
seen how to do this kind
of thing before.

function(num) {
 for (var i = 0; i < num; i++) {
 console.log("Flying!");
 }
}

Looks like
we’re going
to need
a variable
named fly.

Just like
before, w

e

store the

function
away for
later use

.

Now I’ll just assign
that function to the
fly variable.

Now we take the
reference to the
function and assign it
to the variable fly.

And because this is a
function expression I need to
create a reference to this new

function.

And on the right
hand side I’ve got a function

expression. I’m going to grab the
function and stash it away so I can retrieve it

later when the function is invoked.

Next, I see we’ve got
another new variable, fly.
Let me create that...

var migrating = true;

var fly = function(num) {
 for (var i = 0; i < num; i++) {

 console.log("Flying!");

 }

};

function quack(num) {
 for (var i = 0; i < num; i++) {

 console.log("Quack!");

 }

}

if (migrating) {

 quack(4);

 fly(4);

}

Looks
like I’ve got

a variable named
migrating to create,
with the initial value

true.

tr
ue

migrating

fly

fly

434 Chapter 10

invoking a function

Moving on... The conditional
Once the fly variable has been taken care of, the
browser moves on. The next statement is the function
declaration for quack, which was dealt with in the
first pass through the code, so the browser skips the
declaration and moves on to the conditional statement.
Let’s follow along…

quack(4);

function quack(num) {
 for (var i = 0; i < num; i++) {
 console.log("Quack!");
 }
}

function quack(num) {

 for (var i = 0; i < num; i++) {

 console.log("Quack!");

 }

}

... and execute the code in the body
of the function, which prints “Quack!”
four times to the console log.

4

Here’s the function created by the
function declaration for quack.

To invoke the function, we pass a copy of the argument value to the parameter...

...and then ex
ecute the

body of the f
unction.

Remember, the quack
variable is a reference to the
function I stashed away earlier...

Let’s see, the
variable migrating is true, so I

need to execute the body of the if
statement. Inside it looks like there’s a
call to quack. I know it’s a function call
because we’re using the function name,

quack, followed by parentheses.

There’s an argument in the
function call, so I’ll pass
that into the function...

var migrating = true;

var fly = function(num) {
 for (i = 0; i < num; i++) { console.log("Flying!");
 }

};

function quack(num) {
 for (i = 0; i < num; i++) { console.log("Quack!");
 }

}

if (migrating) {
 quack(4);
 fly(4);
}

var migrating = true;

var fly = function(num) {
 for (i = 0; i < num; i++) { console.log("Flying!");
 }

};

function quack(num) {
 for (i = 0; i < num; i++) { console.log("Quack!");
 }

}

if (migrating) {
 quack(4);
 fly(4);
}

Been there, done
that, moving on...

quack

you are here 4 435

first class functions

And finishing up...

var migrating = true;

var fly = function(num) {
 for (var i = 0; i < num; i++) { console.log("Flying!");
 }

};

function quack(num) {
 for (var i = 0; i < num; i++) { console.log("Quack!");
 }

}

if (migrating) {
 quack(4);
 fly(4);
}

All that’s left is to invoke the fly function created by the
function expression. Let’s see how the browser handles this:

fly(4);

function(num) {
 for (vari = 0; i < num; i++) {
 console.log("Flying!");
 }
}

function(num) {

 for (var i = 0; i < num; i++) {

 console.log("Flying!");

 }

}

Then I’ll execute the code in the body
of the function, which prints “Flying!”
four times to the console log.

4

Here’s the
function
referenced by
the fly variable.

To invoke the function, we pass a copy of the argument value to the parameter...

...and then execute the
body of the function.

Remember the fly
variable is a reference to the
function I stashed away earlier...

Hey look, another function
call. I know it’s a function call

because we’re using the variable
name, fly, followed by parentheses.

There’s an argument in the
function call, so I’ll pass
that into the function...

fly

436 Chapter 10

questions about function expressions

What deductions can you make about function declarations and
function expressions given how the browser treats the quack
and fly code? Check each statement that applies. Check your
answer at the end of the chapter before you go on.

 ❏ Function declarations are evaluated
before the rest of the code is evaluated.

 ❏ Function expressions get evaluated
later, with the rest of the code.

 ❏ A function declaration doesn’t return a
reference to a function; rather it creates
a variable with the name of the function
and assigns the new function to it.

 ❏ A function expression returns a
reference to the new function created
by the expression.

 ❏ You can hold function references in
variables.

 ❏ Function declarations are statements;
function expressions are used in
statements.

 ❏ The process of invoking a function
created by a declaration is exactly the
same for one created with an expression.

 ❏ Function declarations are the tried and
true way to create functions.

 ❏ You always want to use function
declarations because they get evaluated
earlier.

Q: We’ve seen expressions like 3+4
and Math.random() * 6, but how can a
function be an expression?

A: An expression is anything that
evaluates to a value. 3+4 evaluates to 7,
Math.random() * 6 evaluates to a random
number, and a function expression evaluates
to a function reference.

Q: But a function declaration is not
an expression?

A: No, a function declaration is a
statement. Think of it as having a hidden
assignment that assigns the function
reference to a variable for you. A function
expression doesn’t assign a function
reference to anything; you have to do that
yourself.

 Q: What good does it do me to have a
variable that refers to a function?

A: Well for one thing you can use it to
invoke the function:

myFunctionReference();

But you can also pass a reference to a
function or return a reference from a function.
But, we’re getting a little ahead of ourselves.
We’ll come back to this in a few pages.

Q: Can function expressions only
appear on the right hand side of an
assignment statements?

A: Not at all. A function expression can
appear in many different places, just like
other kind of expressions can. Stay tuned
because this is a really good question and
we’ll be coming back to this in just a bit.

Q: Okay, a variable can hold a
reference to a function. But what is the
variable really referencing? Just some
code that is in the body of the function?

A: That’s a good way to begin thinking
about functions, but think of them more as
a little crystallized version of the code, all
ready to pull out at any time and invoke.
You’re going to see later that this crystallized
function has a bit more in it than just the
code from the body.

you are here 4 437

first class functions

We just saw that we invoke functions
created by declarations or created by expressions

in exactly the same way. So what is the difference
between declarations and expressions? I feel like I’m

missing something subtle here.

It is a little subtle. First of all, you’re right—
whether you use a function declaration or a function
expression, you end up with a function. But there are
some important differences between the two. For one,
with a declaration, a function is created and setup before
the rest of the code gets evaluated. With a function expression,
a function is created as the code executes, at runtime.

Another difference has to do with function naming—
when you use a declaration, the function name is used to
create and set up as a variable that refers to the function.
And, when you use a function expression, you typically
don’t provide a name for the function, so either you end
up assigning the function to a variable in code, or you
use the function expression in other ways.

Now take these differences and stash them in the back
of your brain as this is all going to become useful shortly.
For now, just remember how function declarations and
expressions are evaluated, and how names are handled.

We’ll take a loo
k at

what those are
 later

in the chapte
r.

438 Chapter 10

exercise for function declarations and expressions

Below, you’ll find JavaScript code. Your job is to play like you’re the
browser evaluating the code. In the space to the right, record each

function as it gets created. Remember to make two passes over
the code: the pass that processes declarations, and the second
pass that handles expressions.

BE the Browser

var midi = true;

var type = "piano";

var midiInterface;

function play(sequence) {

 // code here

}

var pause = function() {

 stop();

}

function stop() {

 // code here

}

function createMidi() {

 // code here

}

if (midi) {

 midiInterface = function(type) {

 // code here

 };

}

Write, in order, the names of the functions
as they are created. If a function is created
with a function expression put the name of
the variable it is assigned to. We've done the
first one for you.

play

you are here 4 439

first class functions

This is the
actual function.

Our two functions again. Remember quack is defined

with a function declaration, and f
ly with a function

expression. Both result in function reference
s, which

are stored in the variables quack
 and fly, respectively.

Sure, we all think of functions as things we invoke, but you can think of
functions as values too. That value is actually a reference to the function, and
as you’ve seen, whether you define a function with a function declaration or
a function expression, you get a reference to that function.

How functions are values too

var superFly = fly;

superFly(2);

var superQuack = quack;

superQuack(3);

fly

function(num) {

 ...

}

A variable can hold a
reference to a function.

function quack(num) {
 for (var i = 0; i < num; i++) {
 console.log("Quack!");
 }
}
var fly = function(num) {
 for (var i = 0; i < num; i++) {
 console.log("Flying!");
 }
}

After we assign the value in fly to superFly,
superFly holds the function reference, so by
adding some parentheses and an argument
we can invoke it!

And even though quack was created by a function declaration, the value in quack is a function reference too, so we can assign it to the variable superQuack and invoke it.

JavaScript console

Flying!
Flying!
Quack!
Quack!
Quack!

One of the most straightforward things we can do with functions is assign
them to variables. Like this:

The function declaration takes care of
assigning the reference to a variable with
the name you supply, in this case quack.
When you have a function expression, you need to assign the resulting reference to a variable yourself. Here we’re storing the reference in the fly variable.

In other words, references are references, no
matter how you create them (that is, with a
declaration or an expression)!

440 Chapter 10

exercise for function values

To get the idea of functions as values into your brain, let’s play a little game of
chance. Try the shell game. Will you win or lose? Give it a try and find out.

var winner = function() { alert("WINNER!") };

var loser = function() { alert("LOSER!") };

// let's test as a warm up

winner();

// let's assign to other variables for practice

var a = winner;

var b = loser;

var c = loser;

a();

b();

// now let's try your luck with a shell game

c = a;

a = b;

b = c;

c = a;

a = c;

a = b;

b = c;

a();

Execute the code (by
hand!) and figure out
if you won or lost.

Remember, these variables hold
references to the winner and loser
functions. We can assign and reassign
these references to other variables,
just like with any value.

Remember, at any time, we can
invoke a reference to a function.

Start thinking about functions as values, just like numbers, strings,
booleans or objects. The thing that really makes a function value

different from these other values is that we can invoke it.

you are here 4 441

first class functions

Head First: Function, we’re so happy to finally have
you back on this show. You’re quite a mystery and our
readers are dying to know more.

Function: It’s true, I’m deep.

Head First: Let’s start with this idea that you can
be created with a declaration, or created with an
expression. Why two ways of defining you? Wouldn’t
one be enough?

Function: Well, remember, these two ways of defining
a function do two slightly different things.

Head First: But the result is the same: a function,
right?

Function: Yes, but look at it this way. A function
declaration is doing a little bit of work behind the scenes
for you: it’s creating the function, and then also creating
a variable to store the function reference in. A function
expression creates the function, which results in a
reference and it’s up to you to do something with it.

Head First: But don’t we always just store the
reference we get from a function expression in a variable
anyway?

Function: Definitely not. In fact, we usually don’t.
Remember a function reference is a value. Think of the
kinds of things you can do with other kinds of values,
like an object reference for instance. I can do all those
things too.

Head First: But how can you possibly do everything
those other values can do? I declare a function, and I
call it. That’s about as much as any language allows,
right?

Function: Wrong. You need to start thinking of a
function as a value, just like objects or the primitive
types. Once you get a hold of a function you can do
all kinds of things with it. But there is one important
difference between a function and other kinds of values,
and that is what really makes me what I am: a function
can be invoked, to execute the code in its body.

Head First: That sounds very impressive and powerful,
but I’d have no idea what to do with you other than
define and call you.

Function: This is where we separate the six figure
coders from the scripters. When you can treat a
function like any other value, all kinds of interesting
programming constructs become possible.

Head First: Can you give us just one example?

Function: Sure. Say you want to write a function that
can sort anything. No problem. All you need is a function
that takes two things: the collection of items you need to
sort, and another function that knows how to compare any
two items in your collection. Using JavaScript you can
easily create code like that. You write one sort function
for every kind of collection, and then just tell that
function how to compare items by passing it a function
that knows how to do the comparison.

Head First: Err…

Function: Like I said, this is where we separate the six
figure coders from the scripters. Again, we’re passing a
function that knows how to do the comparison to the other
function. In other words we’re treating the function like a
value by passing it to a function as a value.

Head First: And what does that get us other than
confused?

Function: It gets you less code, less hard work, more
reliability, better flexibility, better maintainability, a
higher salary.

Head First: That all sounds good, but I’m still not sure
how to get there.

Function: Getting there takes a little bit of work. This
is definitely an area where your brain has to expand a
bit.

Head First: Well, function, my head is expanding so
much it’s about to explode, so I’m going to go lie down.

Function: Any time. Thanks for having me!

Function Exposed
This week’s interview:
Understanding Function

442 Chapter 10

first class functions

Did we mention functions have
First Class status in JavaScript?
If you’re coming to JavaScript from a more traditional programming language
you might expect functions to be… well, just functions. You can declare them
and call them, but when you’re not doing either of those things they just sit
around doing nothing.

Now you know that functions in JavaScript are values—values that can be
assigned to variables. And you know that with values of other types, like
numbers, booleans, strings and even objects, we can do all sorts of things with
those values, like pass them to functions, return them from functions or even
store them in objects or arrays.

Computer scientists actually have a term for these kinds of values: they’re called
first class values. Here’s what you can do with a first class value:

 ❏ Assign the value to a variable (or store it in a data
structure like an array or object).

 ❏ Pass the value to a function.

 ❏ Return the value from a function.

Guess what? We can do all these things with functions too. In fact,
we can do everything with a function that we can do with other values
in JavaScript. So consider functions first class values in JavaScript,
along with all the values of the types you already know: numbers,
strings, booleans and objects.

Here’s a more formal definition of first class:

First class: a value that can be treated like any other

value in a programming language, including the

ability to be assigned to a variable, passed as an

argument, and returned from a function.

We’re going to see that JavaScript functions easily qualify as first
class values—in fact, let’s spend a little time working through
just what it means for a function to be first class in each of these
cases. Here’s a little advice first: stop thinking about functions as
something special and different from other values in JavaScript.
There is great power in treating a function like a value. Our goal
in the rest of the chapter is to show you why.

We always thought VIP-access-
to-all-areas was a better name,
but they didn’t listen to us, so
we’ll stick with first class.

you are here 4 443

first class functions

Flying First Class
The next time you’re in a job interview and you get asked “What
makes JavaScript functions first class?” you’re going to pass with flying
colors. But before you start celebrating your new career, remember
that, so far, all your understanding of first class functions is book
knowledge. Sure, you can recite the definition of what you can do with
first class functions:

If that answer lands you t
he

big job, don’t
forget about

us!

We take donatio
ns in chocolate

,

pizza or bitco
ins.

All passengers are
kept in an array.

 ❏ You can assign functions to variables.

 ❏ You can pass functions to functions.

 ❏ You can return functions from functions.

You’ve seen this already.
We're going to work on this now.

var passengers = [{ name: "Jane Doloop", paid: true },

 { name: "Dr. Evel", paid: true },

 { name: "Sue Property", paid: false },

 { name: "John Funcall", paid: true }];

And we'll cover this in just a bit...

But can you use those techniques in your code, or know when it would
help you to do so? No worries; we’re going to deal with that now by
learning how to pass functions to functions. We’re going to start simple,
and take it from there. In fact, we’re going to start with just a simple
data structure that represents passengers on an airline flight:

And here we have four passengers (feel free to expand this list with friends and family).

And each passenger
is represented by an
object with a name
and a paid property.

The name is a simple text string.
And paid is a boolean that represents whether
or not the passenger has paid for the flight.

Here our goal: write some code that looks at the passenger list
and makes sure that certain conditions are met before the flight
is allowed to take off. For instance, let’s make sure there are no
passengers on a no-fly list. And let’s make sure everyone has paid
for the flight. We might even want to create a list of everyone who
is on the flight.

Here's the data
structure representing
the passengers:

Think about how you’d write code
to perform these three tasks (no-fly
list, paid customers and a list of
passengers).

444 Chapter 10

using functions to check passengers

Now typically you’d write a function for each of these conditions: one to check the
no-fly-list, one to check that every passenger has paid, and one to print out all the
passengers. But if we wrote that code and stepped back to look at it, we’d find that
all these functions look roughly the same, like this:

Writing code to process and check passengers

function checkPaid(passengers) {

 for (var i = 0; i < passengers.length; i++) {

 if (!passengers[i].paid) {

 return false;

 }

 }

 return true;

}

function checkNoFly(passengers) {

 for (var i = 0; i < passengers.length; i++) {

 if (onNoFlyList(passengers[i].name)) {

 return false;

 }

 }

 return true;

}

function printPassengers(passengers) {

 for (var i = 0; i < passengers.length; i++) {

 console.log(passengers[i].name);

 }

 return true;

}

The only thing
different here is the
test for paid versus
being on a no-fly list.

And printPassengers is different only in that there
is no test (instead we pass the passenger to console.
log) and we don't care about the return value, but
we're still iterating through the passengers.

That’s a lot of duplicated code: all these functions iterate through the passengers doing
something with each passenger. And what if there are additional checks needed in
the future? Say, checking to make sure laptops are powered down, checking to see if a
passenger has an upgrade, checking to see if a passenger has a medical issue, and so on.
That’s a lot of redundant code.

Even worse, what if the data structure holding the passengers changes from a simple
array of objects to something else? Then you might have to open every one of these
functions and rewrite it. Not good.

We can solve this little problem with first class functions. Here’s how: we’re going to
write one function that knows how to iterate through the passengers, and pass to that
function a second function that knows how to do the check we need (that is, to see if a
name is on a no-fly list, to check whether or not a passenger has paid, and so on).

you are here 4 445

first class functions

Let’s do a little pre-work on this by first writing a function that takes a passenger as
an argument and checks to see if that passenger’s name is on the no-fly list. Return
true if it is and false otherwise. Write another function that takes a passenger and
checks to see if the passenger hasn’t paid. Return true if the passenger has not paid,
and false otherwise. We’ve started the code for you below; you just need to finish it.
You’ll find our solution on the next page, but don’t peek!

Hint: assume your no-fly list consists
of one individual: Dr. Evel.

function checkNoFlyList(passenger) {

}

function checkNotPaid(passenger) {

}

Let’s get your brain warmed up for passing your first function to another
function. Evaluate the code below (in your head) and see what you
come up with. Make sure you check your answer before moving on.

function sayIt(translator) {
 var phrase = translator("Hello");
 alert(phrase);
}

function hawaiianTranslator(word) {
 if (word === "Hello") return "Aloha";
 if (word === "Goodbye") return "Aloha";
}

sayIt(hawaiianTranslator);

446 Chapter 10

passing a function to a function

Iterating through the passengers

function processPassengers(passengers, testFunction) {

 for (var i = 0; i < passengers.length; i++) {

 if (testFunction(passengers[i])) {

 return false;

 }

 }

 return true;

}

The function
processPassengers has two
parameters. The first is an
array of passengers.

We iterate through all the
passengers, one at a time.

If the result of the function is true, then we return false. In other words, if the passenger failed the test (e.g. they haven’t paid, or they are on the no-fly list), then we don’t want the plane to take off!Otherwise, if we get here then all
passengers passed the test and we
return true.

We need a function that takes the passengers and another function that
knows how to test a single passenger for some condition, like being on the
no-fly list. Here’s how we do that:

And the second is a function
that knows how to look
for some condition in the
passengers.

And then we call the
function on each passenger.

Now all we need are some functions that can test passengers (luckily you
wrote these in the previous Sharpen Your Pencil exercise). Here they are:

function checkNoFlyList(passenger) {

 return (passenger.name === "Dr. Evel");

}

function checkNotPaid(passenger) {

 return (!passenger.paid);

}

Here’s the function to check to see if a
passenger is on the no-fly list. Our no-fly
list is simple: everyone except Dr. Evel can
fly. We return true if the passenger is Dr.
Evel; otherwise, we return false (that is, the
passenger is not on the no-fly list).

And here’s the function to check to see if a
passenger has paid. All we do is check the paid
property of the passenger. If they have not
paid, then we return true.

Pay attention: this is one passenger (an object) not the array of passengers (an array of objects).

you are here 4 447

first class functions

var allCanFly = processPassengers(passengers, checkNoFlyList);

if (!allCanFly) {

 console.log("The plane can't take off: we have a passenger on the no-fly list.");

}

var allPaid = processPassengers(passengers, checkNotPaid);

if (!allPaid) {

 console.log("The plane can't take off: not everyone has paid.");

}

Test drive flight

Passing a function to a function
Okay, we’ve got a function that’s ready to accept a function as an argument
(processPassengers), and we’ve got two functions that are ready to be passed as
arguments to processPassengers (checkNoFlyList and checkNotPaid).

It’s time to put this all together. Drum roll please…

Passing a function to a function is easy. We just use the name of the function as the argument.

Here, we’re passing the checkNoFlyList
function. So processPassengers will
check each passenger to see if they are
on the no-fly list.

If any of the passengers are on the no-fly list, we’ll get back
false, and we’ll see this message in the console.

Here, we’re passing the
checkNotPaid function. So
processPassengers will check each
passenger to see if they’ve paid.

If any of the passengers haven’t paid, we’ll get back
false, and we’ll see this message in the console.

To test drive your code, just add this JavaScript to a
basic HTML page, and load it into your browser.

JavaScript console

The plane can't take off: we have a passenger on

the no-fly list.

The plane can't take off: not everyone has paid.

Well, looks like we won't be
taking off after all. We've got
problems with our passengers!
Good thing we checked...

First class is
always better... I'm talking
about functions of course...

448 Chapter 10

questions about first class functions

function printPassenger(passenger) {

}

processPassengers(passengers, printPassenger);

Your turn again: write a function that prints a passenger’s name and whether or not they
have paid to console.log. Pass your function to processPassengers to test it. We’ve started
the code for you below; you just need to finish it up. Check your answer at the end of the
chapter before you go on.

Q: Couldn’t we just put all this code into
processPassengers? We could just put all the checks we need
into one iteration, so each time through we do all the checks
and print the list. Wouldn’t that be more efficient?

A: If your code is short and simple, yes, that might be a
reasonable approach. However, what we’re really after is flexibility.
What if, in the future, you are constantly adding new checks (has
everyone put their laptop away?) or requirements for your existing
functions change? Or the underlying data structure for passengers
changes? In these cases, the design we used allows you to make
changes or additions in a way that reduces overall complexity and
that is less likely to introduce bugs into your code.

Q: What exactly are we passing when we pass a function to
a function?

A: We’re passing a reference to the function. Think of that
reference like a pointer that points to an internal representation of
the function itself. The reference itself can be held in a variable and
reassigned to other variables or passed as an argument to a function.
And placing parentheses after a function reference causes the
function to be invoked.

Write your code here.

Your code should print out the list of passengers when you pass the function to processPassengers.

you are here 4 449

first class functions

function fun(echo) {
 console.log(echo);
}

function fun(echo) {
 console.log(echo);
}

Below we’ve created a function and assigned it to the variable fun.

Work your way through this code and write the resulting output on this page.
Do this with your brain before you attempt it with your computer.

fun("hello");

function boo(aFunction) {
 aFunction("boo");
}

boo(fun);

console.log(fun);

fun(boo);

var moreFun = fun;

moreFun("hello again");

function echoMaker() {
 return fun;
}

var bigFun = echoMaker();
bigFun("Is there an echo?");

Super important: check and understand the answers before moving on!

Extra credit! (A
preview of what’s
coming up...)

fun

450 Chapter 10

updating the passengers

Returning functions from functions
At this point we’ve exercised two of our first class requirements,
assigning functions to variables and passing functions to functions, but
we haven’t yet seen an example of returning a function from a function.

 ❏ You can assign functions to variables.

 ❏ You can pass functions to functions.

 ❏ You can return functions from functions.

Let’s extend the airline example a bit and explore why and where we
might want to return a function from a function. To do that, we’ll add
another property to each of our passengers, the ticket property, which
is set to “coach” or “firstclass” depending on the type of ticket the
passenger has purchased:

We’re doing
this now.

function serveCustomer(passenger) {

 // get drink order

 // get dinner order

 // pick up trash

}

var passengers = [{ name: "Jane Doloop", paid: true, ticket: "coach" },

 { name: "Dr. Evel", paid: true, ticket: "firstclass" },

 { name: "Sue Property", paid: false, ticket: "firstclass" },

 { name: "John Funcall", paid: true, ticket: "coach" }];

With that addition, we’ll write some code that handles the
various things a flight attendant needs to do:

Here are all the things the flight
attendant needs to do to serve
each passenger.

Let's start by
implementing the
drink order.

Now as you might know, service in first class tends to be a little different
from the service in coach. In first class you’re able to order a cocktail or
wine, while in coach you’re more likely to be offered a cola or water.

What I’m
offering depends on your

class of ticket. First class gets
wine or a cocktail; coach gets
cola or water.

At least that’s how it
looks in the movies...

you are here 4 451

first class functions

Writing the flight attendant drink order code
Now your first attempt might look like this:

function serveCustomer(passenger) {

 if (passenger.ticket === "firstclass") {

 alert("Would you like a cocktail or wine?");

 } else {

 alert("Your choice is cola or water.");

 }

 // get dinner order

 // pick up trash

}

If the passenger's ticket is a
first class ticket then we issue
an alert to ask if they'd like a
cocktail or a wine.

If they have a coach ticket, then ask if they want a cola or water.

Not bad. For simple code this works well: we’re taking the passenger’s ticket and
then displaying an alert based on the type of ticket they purchased. But let’s
think through some potential downsides of this code. Sure, the code to take a
drink order is simple, but what happens to the serveCustomer function if the
problem becomes more complex. For instance, we might start serving three classes
of passengers (firstclass, business and coach. And what about premium economy,
that’s four!). What happens if the drink offerings get more complex? Or what if the
choice of drinks is based on the location of the originating or destination airport?

If we have to deal with these complexities then serveCustomer is quickly going
to become a large function that is a lot more about managing drinks than serving
customers, and when we design functions, a good rule of thumb is to have them do
only one thing, but do it really well.

Re-read all the potential issues listed in the last two paragraphs on this page. Then, think
about what code design would allow us to keep serveCustomer focused, yet also allow for
expansion of our drink-serving capability in the future.

For instance they
typically only serve
Maitais to first
class on trips to
Hawaii (or so we've
been told).

452 Chapter 10

organizing the code to check passengers

The flight attendant drink order code: a different approach
Our first pass wasn’t bad, but as you can see this code could be problematic over time as the
drink serving code gets more complex. Let’s rework the code a little, as there’s another way
we can approach this by placing the logic for the drink orders in a separate function. Doing so
allows us to hide away all that logic in one place, and it also gives us a well-defined place to go
if we need to update the drink order code:

function createDrinkOrder(passenger) {

 if (passenger.ticket === "firstclass") {

 alert("Would you like a cocktail or wine?");

 } else {

 alert("Your choice is cola or water.");

 }

}

And we'll place all the logic for
the drink order here.

And we'll replace the original, inline logic with a call to createDrinkOrder.

That’s definitely going to be more readable with a single function call replacing
all the inline drink order logic. It’s also conveniently put all the drink order code
in one, easy-to-find place. But, before we give this code a test drive, hold on,
we’ve just heard about another issue…

Now this code is no longer
polluting the serveCustomer
function with a lot of drink
order logic.

Here we're creating a new function
createDrinkOrder, which is passed a passenger.

Now we can revisit the serveCustomer function and remove all the drink order logic,
replacing it with a call to this new function.

function serveCustomer(passenger) {

 if (passenger.ticket === "firstclass") {

 alert("Would you like a cocktail or wine?");

 } else {

 alert("Your choice is cola or water.");

 }

 createDrinkOrder(passenger);

 // get dinner order

 // pick up trash

}

We're removing the logic from
serveCustomer...

The createDrinkOrder function
is passed the passenger that was
passed into serveCustomer.

you are here 4 453

first class functions

function serveCustomer(passenger) {

 createDrinkOrder(passenger);

 // get dinner order

 createDrinkOrder(passenger);

 createDrinkOrder(passenger);

 // show movie

 createDrinkOrder(passenger);

 // pick up trash

}

We've updated the code to
reflect the fact we're calling createDrinkOrder a lot
during the flight.

Now, on the one hand we designed our code well, because adding
additional calls to createDrinkOrder works just fine. But, on the
other hand, we’re unnecessarily recomputing what kind of passenger
we’re serving in createDrinkOrder every time we take an order.

“But it’s only a few lines of code.” you say? Sure, but this is a simple
example in a book. What if in the real world you had to check the ticket
type by communicating with a web service from a mobile device? That
gets time consuming and expensive.

Don’t worry though, because a first class function just rode in on a
white horse to save us. You see, by making use of the capability to
return functions from functions we can fix this problem.

Wait, we need more drinks!
Stop the presses, we’ve just heard that one drink order is not
enough on a flight. In fact, the flight attendants say a typical flight
looks more like this:

Come on
guys, a single drink?

What is this? Cheap-o-
Airlines?

What do you think this code does? Can you come up with some
examples of how to use it?

function addN(n) {

 var adder = function(x) {

 return n + x;

 };

 return adder;

} Answer here.

454 Chapter 10

returning a function from a function

Taking orders with first class functions
Now it’s time to wrap your head around how a first class function can help this situation.
Here’s the plan: rather than calling createDrinkOrder multiple times per passenger, we’re
instead going to call it once, and have it hand us back a function that knows how to do a drink
order for that passenger. Then, when we need to take a drink order, we just call that function.

Let’s start by redefining createDrinkOrder. Now when we call it, it will package up the code
to take a drink order into a function and return the function for us to use when we need it.

function createDrinkOrder(passenger) {
 var orderFunction;

 if (passenger.ticket === "firstclass") {
 orderFunction = function() {
 alert("Would you like a cocktail or wine?");
 };
 } else {
 orderFunction = function() {
 alert("Your choice is cola or water.");
 };
 }
 return orderFunction;
}

Here's the new createDrinkOrder. It's going to return a
function that knows how to take a drink order.

First, create a
variable to hold
the function we
want to return.

If the passenger is first
class, we create a function
that knows how to take a
first class order.
Otherwise create a
function to take a
coach class order.

Now let’s rework serveCustomer. We’ll first call createDrinkOrder to get a function
that knows how to take the passenger’s order. Then, we’ll use that same function over and
over to take a drink order from the passenger.

function serveCustomer(passenger) {
 var getDrinkOrderFunction = createDrinkOrder(passenger);

 getDrinkOrderFunction();

 // get dinner order
 getDrinkOrderFunction();

 getDrinkOrderFunction();

 // show movie

 getDrinkOrderFunction();

 // pick up trash
}

And return the function.

Now, we execute the
conditional code to check
the passenger’s ticket
type only once.

We use the function we get back
from createDrinkOrder whenever
we need to get a drink order for
this passenger.

createDrinkOrder now returns a
function, which we store in the
getDrinkOrderFunction variable.

you are here 4 455

first class functions

Test drive flight

function servePassengers(passengers) {

 for (var i = 0; i < passengers.length; i++) {

 serveCustomer(passengers[i]);

 }

}

servePassengers(passengers);

Let’s test the new code. To do that we need to write a quick function to iterate
over all the passengers and call serveCustomer for each passenger. Once you’ve
added the code to your file, load it in the browser and take some orders.

All we’re doing here is iterating over the
passengers in the passengers array, and
calling serveCustomer on each passenger.

And of course we need to call
servePassengers to get it all going. (Be
prepared, there are a lot of alerts!)

Q: Just to make sure I understand...
when we call createDrinkOrder, we get
back a function that we have to call again
to get the drink order?

A: That’s right. We first call
createDrinkOrder to get back a function,
getDrinkOrderFunction, that knows how to
ask a passenger for an order, and then we
call that function every time we want to take
the order. Notice that getDrinkOrderFunction
is a lot simpler than createDrinkOrder: all
getDrinkOrderFunction does is alert, asking
for the passenger’s order.

Q: So how does
getDrinkOrderFunction know which alert
to show?

A: Because we created it specifically
for the passenger based on their ticket.
Look back at createDrinkOrder again. The

function we’re returning corresponds to the
passenger’s ticket type: if the passenger is
in first class, then getDrinkOrderFunction
is created to show an alert asking for a first
class order. But if the passenger is in coach,
then getDrinkOrderFunction is created to
show an alert asking for a coach order. By
returning the correct kind of function for that
specific passenger’s ticket type, the ordering
function is simple, fast, and easy to call each
time we need to take an order.

Q: This code serves one passenger a
drink, shows the movie, etc. Don't flight
attendants usually serve a drink to all the
passengers and show the movie to all
passengers and so on?

A: See we were testing you! You passed.
You’re exactly right; this code applies the
entire serveCustomer function to a single
passenger at a time. That’s not really how
it works in the real world. But, this is meant
to be a simple example to demonstrate a

complex topic (returning functions), and it’s
not perfect. But now that you’ve pointed out
our mistake… students, take out a sheet of
paper and:

How would you rework
the code to serve drinks,
dinner and a movie to
all the passengers, and
do it without endlessly
recomputing their order
based on their ticket class?
Would you use first class
functions?

456 Chapter 10

exercise for first class functions

Your job is to add a third class of service to our code. Add “premium economy” class
(“premium” for short). Premium economy gets wine in addition to cola or water. Also,
implement getDinnerOrderFunction with the following menu:

Check your answer at the end of the chapter! And don’t forget to test your code.

Make sure you use first class
functions to implement this!

First class: chicken or pasta

Premium economy: snack box or cheese plate

Coach: peanuts or pretzels

you are here 4 457

first class functions

var products = [{ name: "Grapefruit", calories: 170, color: "red", sold: 8200 },

 { name: "Orange", calories: 160, color: "orange", sold: 12101 },

 { name: "Cola", calories: 210, color: "caramel", sold: 25412 },

 { name: "Diet Cola", calories: 0, color: "caramel", sold: 43922 },

 { name: "Lemon", calories: 200, color: "clear", sold: 14983 },

 { name: "Raspberry", calories: 180, color: "pink", sold: 9427 },

 { name: "Root Beer", calories: 200, color: "caramel", sold: 9909 },

 { name: "Water", calories: 0, color: "clear", sold: 62123 }

];

Webville Cola
Webville Cola needs a little help managing the code for
their product line. To give them a hand, let’s take a look at
the data structure they use to hold the sodas they produce:

Looks like they're storing their products as an array
of objects. Each object is a product.

In each product they're storing a name, number of
calories, color and number of bottles sold per month.

We really need some help sorting these
products. We need to sort them by every possible

property: name, calories, color, sales numbers. Of course
we want to get this done as efficiently as we can, and also
keep it flexible so we can sort in lots of different ways.

Webville Cola's analytics guy

458 Chapter 10

conversation about sorting arrays

Frank: Hey guys, I got a call from Webville Cola and they
need help with their product data. They want to be able to
sort their products by any property, like name, bottles sold,
soda color, calories per bottle, and so on, but they want it
flexible in case they add more properties in the future.

Joe: How are they storing this data?

Frank: Oh, each soda is an object in an array, with
properties for name, number sold, calories…

Joe: Got it.

Frank: My first thought was just to search for a simple sort
algorithm and implement it. Webville Cola doesn’t have many
products so it just needs to be simple.

Jim: Oh, I’ve got a simpler way than that, but it requires you
use your knowledge of first class functions.

Frank: I like hearing simple! But how do first class functions fit in?
That sounds complicated to me.

Jim: Not at all. It’s as easy as writing a function that knows how to compare two
values, and then passing that to another function that does the real sorting for you.

Joe: How does the function we’re writing work exactly?

Jim: Well, instead of handling the entire sort, all you need to do is write a function that
knows how to compare two values. Say you want to sort by a product property like the
number of bottles sold. You set up a function like this:

 function compareSold(product1, product2) {

 // code to compare here

 }

We can fill in the details of the code in a minute, but for now, the key is that once you
have this function you just pass it to a sort function and that sort function does the work
for you—it just needs you to help it know how to compare things.

Frank: Wait, where is this sort function?

Jim: It’s actually a method that you can call on any array. So you can call the sort
method on the products array and pass it this compare function we’re going to
write. And, when sort is done, the products array will be sorted by whatever criteria
compareSold used to sort the values.

Joe: So if I’m sorting how many bottles are sold, those are numbers, so the
compareSold function just needs to determine which value is less or greater?

Jim: Right. Let’s take a closer look at how the array sort works…

This function needs to
take two products and
then compare them.

Jim
Frank Joe

you are here 4 459

first class functions

JavaScript arrays provide a sort method that, given a function that
knows how to compare two items in the array, sorts the array for you.
Here’s the big picture of how this works and how your comparison
function fits in: sort algorithms are well known and widely implemented,
and the great thing about them is that sorting code can be reused for
just about any set of items. But there’s one catch: to know how to sort
a specific set of items, the sort code needs to know how those items
compare. Think about sorting a set of numbers versus sorting a list
of names versus sorting a set of objects. The way we compare values
depends on the type of the items: for numbers we use <, > and == ,
for strings we compare them alphabetically (in JavaScript, you can do
that with <, > and ==) and for objects we’d have some custom way of
comparing them based on their properties.

Let’s look at a simple example before we move on to Webville Cola’s
products array. We’ll use a simple array of numbers and use the sort
method to put them in ascending order. Here’s the array:

How the array sort method works

function compareNumbers(num1, num2) {

 if (num1 > num2) {

 return 1;

 } else if (num1 === num2) {

 return 0;

 } else {

 return -1;

 }

}

This array is made of numbers, so we’re going
to be comparing two numbers at a time.

We first check
to see if num1 is
greater than num2.
If it is, we return 1.

And finally, if num1 is less
than num2, we return -1.

var numbersArray = [60, 50, 62, 58, 54, 54];

Next we need to write our own function that knows how to compare two
values in the array. Now, this is an array of numbers, so our function
will need to compare two numbers at a time. Assume we’re going to sort
the numbers in ascending order; for that the sort method expects us to
return something greater than 0 if the first number is greater than the
second, 0 if they are equal, and something less than 0 if the first number
is less than the second. Like this:

If they are equal then
we return 0.

Serious Tip
JavaScript arrays have
many useful methods you can use to manipulate

arrays in various ways. A great reference on all these methods and how to use them is
JavaScript: The Definitive Guide by David Flanagan (O’Reilly).

You know that the comparison
function we pass to sort needs
to return a number greater
than 0, equal to 0, or less than
0 depending on the two items
we’re comparing: if the first
item is greater than second, we
return a value greater than 0; if
first item is equal to the second,
we return 0; and if the first item
is less than the second, we
return a value less than 0.

Can you use this knowledge
with the fact that we’re
comparing two numbers in
compareNumbers to rewrite
compareNumbers using much
less code?

Check your answer at the end
of the chapter before you go on.

460 Chapter 10

sorting an array of numbers

var numbersArray = [60, 50, 62, 58, 54, 54];

numbersArray.sort(compareNumbers);

console.log(numbersArray);

JavaScript console
[50, 54, 54, 58, 60, 62]

Now that we’ve written a compare function, all we need to do is call the sort
method on numbersArray, and pass it the function. Here’s how we do that:

Putting it all together

We call the sort method on
the array, passing it the
compareNumbers function.

And when sort is complete the array is
sorted in ascending order, and we display
that in the console as a sanity check.

Here’s the array sorted
in ascending order.

The sort method has sorted numbersArray in ascending order because when we return
the values 1, 0 and -1, we’re telling the sort method:

 1: place the first item after the second item

 0: the items are equivalent, you can leave them in place

 -1: place the first item before the second item.

Changing your code to sort in descending order is a matter of inverting this logic
so that 1 means place the second item after the first item, and -1 means place the
second item before the first item (0 stays the same). Write a new compare function for
descending order:

function compareNumbersDesc(num1, num2) {

 if (_____ > _____) {

 return 1;

 } else if (num1 === num2) {

 return 0;

 } else {

 return -1;

 }

}

Note that the sort method is destructive, in that it changes
the array, rather than returning a new array that is sorted.

you are here 4 461

first class functions

Meanwhile back at Webville Cola
It’s time to help out Webville Cola with your new knowledge of array sorting.
Of course all we really need to do is write a comparison function for them,
but before we do that let’s quickly review the products array again:

products.sort(compareSold);

function compareSold(colaA, colaB) {
 if (colaA.sold > colaB.sold) {
 return 1;
 } else if (colaA.sold === colaB.sold) {
 return 0;
 } else {
 return -1;
 }
}

var products = [{ name: "Grapefruit", calories: 170, color: "red", sold: 8200 },
 { name: "Orange", calories: 160, color: "orange", sold: 12101 },
 { name: "Cola", calories: 210, color: "caramel", sold: 25412 },
 { name: "Diet Cola", calories: 0, color: "caramel", sold: 43922 },
 { name: "Lemon", calories: 200, color: "clear", sold: 14983 },
 { name: "Raspberry", calories: 180, color: "pink", sold: 9427 },
 { name: "Root Beer", calories: 200, color: "caramel", sold: 9909 },
 { name: "Water", calories: 0, color: "clear", sold: 62123 }
];

So what are we going to sort first? Let’s start with sorting by the number of bottles sold,
in ascending order. To do this we’ll need to compare the sold property of each object.
Now one thing you should take note of is, because this is an array of product objects,
the compare function is going to be passed two objects, not two numbers:

Remember, each item in the products array is an object. We don’t
want to compare the objects to one another, we want to compare
specific properties, like sold, in the objects.

compareSold takes two cola product
objects, and compares the sold
property of colaA to the sold
property of colaB.

This function will make the sort
method sort the colas by number of
bottles sold in ascending order.

And of course, to use the compareSold function to sort the products array, we
simply call the products array’s sort method:

 Remember that the sort method can be used for any kind of array (numbers, strings, objects), and for any kind of sort (ascending or descending). By passing in a compare function, we get flexibility and code reuse!

But we don’t have
to tell them that.

Feel free to simplify this code like you
did in the earlier exercise if you want!

462 Chapter 10

testing webville cola’s product sorting

JavaScript console
Name: Grapefruit, Calories: 170, Color: red, Sold: 8200
Name: Raspberry, Calories: 180, Color: pink, Sold: 9427
Name: Root Beer, Calories: 200, Color: caramel, Sold: 9909
Name: Orange, Calories: 160, Color: orange, Sold: 12101
Name: Lemon, Calories: 200, Color: clear, Sold: 14983
Name: Cola, Calories: 210, Color: caramel, Sold: 25412
Name: Diet Cola, Calories: 0, Color: caramel, Sold: 43922
Name: Water, Calories: 0, Color: clear, Sold: 62123

Here's our output running the c
ode using the

compareSold sort function. Notice the products

are in order by the number of bottles sold.

Take sorting for a test drive
Time to test the first Webville Cola code. You’ll find all the code from the last few
pages consolidated below along with some extras to test this out properly. So, just
create a simple HTML page with this code (“cola.html”) and give it some QA:

var products = [{ name: "Grapefruit", calories: 170, color: "red", sold: 8200 },
 { name: "Orange", calories: 160, color: "orange", sold: 12101 },
 { name: "Cola", calories: 210, color: "caramel", sold: 25412 },
 { name: "Diet Cola", calories: 0, color: "caramel", sold: 43922 },
 { name: "Lemon", calories: 200, color: "clear", sold: 14983 },
 { name: "Raspberry", calories: 180, color: "pink", sold: 9427 },
 { name: "Root Beer", calories: 200, color: "caramel", sold: 9909 },
 { name: "Water", calories: 0, color: "clear", sold: 62123 }
];

function compareSold(colaA, colaB) {
 if (colaA.sold > colaB.sold) {
 return 1;
 } else if (colaA.sold === colaB.sold) {
 return 0;
 } else {
 return -1;
 }
}

function printProducts(products) {
 for (var i = 0; i < products.length; i++) {
 console.log("Name: " + products[i].name +
 ", Calories: " + products[i].calories +
 ", Color: " + products[i].color +
 ", Sold: " + products[i].sold);
 }
}

products.sort(compareSold);
printProducts(products);

Here’s the compare function
we’ll pass to sort...

... and here’s a new function
we wrote to print the
products so they look nice in
the console. (If you just write
console.log(products), you can
see the output, but it doesn’t
look very good).

So first we sort the products,
using compareSold...

... and then print the results.

you are here 4 463

first class functions

You guys nailed it!

Now that we have a way to sort colas by the sold property, it’s time to write compare
functions for each of the other properties in the product object: name, calories, and color.
Check the output you see in the console carefully; make sure for each kind of sort, the
products are sorted correctly. Check the answer at the end of the chapter.

function compareName(colaA, colaB) {

}

function compareCalories(colaA, colaB) {

}

function compareColor(colaA, colaB) {

}

products.sort(compareName);

console.log("Products sorted by name:");

printProducts(products);

products.sort(compareCalories);

console.log("Products sorted by calories:");

printProducts(products);

products.sort(compareColor);

console.log("Products sorted by color:");

printProducts(products);

Write your solutions for the remaining
three sort functions below.

Hint: you can use <, > and ==
to sort alphabetically too!

For each new
compare function,
we call sort, and
display the results
in the console.

464 Chapter 10

chapter summary

 � There are two ways to define
a function: with a function
declaration and with a function
expression.

 � A function reference is a value that
refers to a function.

 � Function declarations are handled
before your code is evaluated.

 � Function expressions are evaluated
at runtime with the rest of your
code.

 � When the browser evaluates a
function declaration, it creates a
function as well as a variable with
the same name as the function, and
stores the function reference in the
variable.

 � When the browser evaluates a
function expression, it creates a
function, and it’s up to you what to
do with the function reference.

 � First class values can be assigned
to variables, included in data
structures, passed to functions, or
returned from functions.

 � A function reference is a first class
value.

 � The array sort method takes a
function that knows how to compare
two values in an array.

 � The function you pass to the sort
method should return one of these
values: a number greater than 0, 0,
or a number less than 0.

you are here 4 465

first class functions

What deductions can you make about function declarations and
function expressions given how the browser treats the quack and fly
code? Check each statement that applies. Check your answer at the end
of the chapter before you go on.

 ❏ Function declarations are evaluated
before the rest of the code is evaluated.

 ❏ Function expressions get evaluated
later, with the rest of the code.

 ❏ A function declaration doesn’t return a
reference to a function; rather it creates
a variable with the name of the function
and assigns the new function to it.

 ❏ A function expression returns a
reference to the new function created
by the expression.

 ❏ The process of invoking a function
created by a declaration is exactly the
same for one created with an expression.

 ❏ You can hold function references in
variables.

 ❏ Function declarations are statements;
function expressions are used in
statements.

 ❏ Function declarations are the tried and
true way to create functions.

 ❏ You always want to use function
declarations because they get evaluated
earlier.

Not necessarily!

Exercise Solutions

466 Chapter 10

exercise solutions

Below, you’ll find JavaScript code. Your job is to play like you’re the
browser evaluating the code. In the space to the right, record each

function as it gets created. Remember to make two passes over
the code: the pass that processes declarations, and the second
pass that handles expressions.

BE the Browser Solution

var midi = true;

var type = "piano";

var midiInterface;

function play(sequence) {

 // code here

}

var pause = function() {

 stop();

}

function stop() {

 // code here

}

function createMidi() {

 // code here

}

if (midi) {

 midiInterface = function(type) {

 // code here

 };

}

Write, in order, the names of the functions
as they are created. If a function is created
with a function expression put the name of
the variable it is assigned to. We've done the
first one for you.

play
stop
createMidi
pause
midiInterface

you are here 4 467

first class functions

To get the idea of functions as values into your brain, let’s play
a little game of chance. Try the shell game. Did you win or lose?
Give it a try and find out. Here’s our solution.

var winner = function() { alert("WINNER!") };

var loser = function() { alert("LOSER!") };

// let's test as a warm up

winner();

// let's assign to other variables for practice

var a = winner;

var b = loser;

var c = loser;

a();

b();

// now let's try your luck with a shell game

c = a;

a = b;

b = c;

c = a;

a = c;

a = b;

b = c;

a();

c is winner
a is loser
b is winner
c is loser
a is loser
a is winner
b is loser
invoking a...
winner!!!

Remember, these variables hold
references to the winner and loser
functions. We can assign and reassign
these references to other variables,
just like with any value.

Remember, at any time, we can
invoke a reference to a function.

468 Chapter 10

exercise solutions

Your turn again: write a function that prints a passenger’s name and whether or not they
have paid to console.log. Pass your function to processPassengers to test it. We’ve started
the code for you below; you just need to finish it up. Here’s our solution.

function printPassenger(passenger) {

 var message = passenger.name;

 if (passenger.paid) {

 message = message + " has paid";

 } else {

 message = message + " has not paid";

 }

 console.log(message);

 return false;

}

processPassengers(passengers, printPassenger);

JavaScript console
Jane Doloop has paid
Dr. Evel has paid
Sue Property has not paid
John Funcall has paid

This return value doesn’t matter that
much because we’re ignoring the result
from processPassengers in this case.

Let’s get your brain warmed up for passing your first function to another
function. Evalute the code below (in your head) and see what you come
up with. Here’s our solution:

function sayIt(translator) {
 var phrase = translator("Hello");
 alert(phrase);
}

function hawaiianTranslator(word) {
 if (word === "Hello") return "Aloha";
 if (word === "Goodbye") return "Aloha";
}

sayIt(hawaiianTranslator);

We’re defining a function that
takes a function as an argument,
and then calls that function.

We’re passing the function
hawaiianTranslator to the
function sayIt.

you are here 4 469

first class functions

function fun(echo) {
 console.log(echo);
}

function fun(echo) {
 console.log(echo);
};

Below we’ve created a function and assigned it to the variable fun.

Work your way through this code and write the resulting output on this page.
Do this with your brain before you attempt it with your computer.

fun("hello");

function boo(aFunction) {
 aFunction("boo");
}

boo(fun);

console.log(fun);

fun(boo);

var moreFun = fun;

moreFun("hello again");

function echoMaker() {
 return fun;
}

var bigFun = echoMaker();
bigFun("Is there an echo?");

Super important: check and understand the answers before moving on!

Extra credit! (A
preview of what’s
coming up...)

fun

hello

boo
function fun(echo) { console.log(echo); }

function boo(aFunction) { aFunction(“boo”); }

hello again

Is there an echo?

Warning note: your browser may
display different values in the
console for the fun and boo
functions. Try this exercise in a
couple of different browsers.

470 Chapter 10

exercise solutions

Your job is to add a third class of service to our code. Add “premium economy” class
(“premium” for short). Premium economy gets wine in addition to cola or water. Also,
implement getDinnerOrderFunction with the following menu:

First class: chicken or pasta

Premium economy: snack box or cheese plate

Coach: peanuts or pretzels

Here’s our solution.

var passengers = [{ name: "Jane Doloop", paid: true, ticket: "coach" },
 { name: "Dr. Evel", paid: true, ticket: "firstclass" },
 { name: "Sue Property", paid: false, ticket: "firstclass" },
 { name: "John Funcall", paid: true, ticket: "premium" }];

function createDrinkOrder(passenger) {
 var orderFunction;
 if (passenger.ticket === "firstclass") {
 orderFunction = function() {
 alert("Would you like a cocktail or wine?");
 };
 } else if (passenger.ticket === "premium") {
 orderFunction = function() {
 alert("Would you like wine, cola or water?");
 };
 } else {
 orderFunction = function() {
 alert("Your choice is cola or water.");
 };
 }
 return orderFunction;
}

We’ve upgraded John Funcall
to premium economy for this
flight (so we can test our
new code).

Here’s the new code to handle the
premium economy class. Now we’re
returning one of three different
order functions depending on the
ticket type of the passenger.

Notice how handy it is to have all this

logic encapsulated in one function
that

knows how to create the right kind of

order function for a customer.

And when we make an order, we don’t
have to do this logic; we have an order

function that is customized for the
passenger already!

you are here 4 471

first class functions

function createDinnerOrder(passenger) {
 var orderFunction;
 if (passenger.ticket === "firstclass") {
 orderFunction = function() {
 alert("Would you like chicken or pasta?");
 };
 } else if (passenger.ticket === "premium") {
 orderFunction = function() {
 alert("Would you like a snack box or cheese plate?");
 };
 } else {
 orderFunction = function() {
 alert("Would you like peanuts or pretzels?");
 };
 }
 return orderFunction;
}

function serveCustomer(passenger) {
 var getDrinkOrderFunction = createDrinkOrder(passenger);
 var getDinnerOrderFunction = createDinnerOrder(passenger);

 getDrinkOrderFunction();

 // get dinner order
 getDinnerOrderFunction();

 getDrinkOrderFunction();
 getDrinkOrderFunction();
 // show movie
 getDrinkOrderFunction();
 // pick up trash
}

function servePassengers(passengers) {
 for (var i = 0; i < passengers.length; i++) {
 serveCustomer(passengers[i]);
 }
}

servePassengers(passengers);

We’ve added
a completely
new function,
createDinnerOrder,
to create a dinner
ordering function for
a passenger.

It works in the
same way that
createDrinkOrder
does: by looking at the
passenger ticket type
and returning an order
function customized for
that passenger.

We create the right
kind of dinner order
function for the
passenger...

...and then call it whenever we want
to take a passenger’s dinner order.

472 Chapter 10

exercise solutions

The sort method has sorted
numbersArray in ascending order
because when we return the
values 1, 0 and -1, we’re telling
the sort method:

1: place the first item after the second item

0: the items are equivalent, you can leave them in place

 -1: place the first item before the second item.

Changing your code to sort in descending order is a
matter of inverting this logic so that 1 means place the
second item after the first item, and -1 means place
the second item before the first item (0 stays the same).
Write a new compare function for descending order:

function compareNumbersDesc(num1, num2) {

 if (_____ > _____) {

 return 1;

 } else if (num1 == num2) {

 return 0;

 } else {

 return -1;

 }

}

num2 num1

What do you think this code does? Can you come up with some
examples of how to use it? Here’s our solution.

function addN(n) {

 var adder = function(x) {

 return n + x;

 };

 return adder;

}

This function takes one argument n. It
then creates a function that also takes one
argument, x, and adds n and x together.
That function is returned.

var add2 = addN(2);

console.log(add2(10));

console.log(add2(100));

So we used it to create a function that
always adds 2 to a number. Like this:

function compareNumbers(num1, num2) {

 return num1 - num2;

}

You know that the comparison function we pass
to sort needs to return a number greater than 0,
equal to 0, or less than 0 depending on the two
items we’re comparing: if the first item is greater
than second, we return a value greater than 0; if
first item is equal to the second, we return 0; and
if the first item is less than the second, we return a
value less than 0.

Can you use this knowledge with the fact we’re
comparing two numbers in compareNumbers to
rewrite compareNumbers using much less code?

Here’s our solution:

We can make this function a single line
of code by simply returning the result of
substracting num2 from num1. Run through
a couple of examples to see how this works.
And remember sort is expecting a number
greater than, equal to, or less than 0, not
specifically 1, 0, -1 (although you’ll see a lot
of code return those values for sort).

you are here 4 473

first class functions

You guys nailed it!

Now that we have a way to sort colas by the sold property, it’s time to write compare
functions for each of the other properties in the product object: name, calories, and color.
Check the output you see in the console carefully; make sure for each kind of sort, the
products are sorted correctly. Here’s our solution.

function compareName(colaA, colaB) {
 if (colaA.name > colaB.name) {
 return 1;
 } else if (colaA.name === colaB.name) {
 return 0;
 } else {
 return -1;
 }
}

function compareCalories(colaA, colaB) {
 if (colaA.calories > colaB.calories) {
 return 1;
 } else if (colaA.calories === colaB.calories) {
 return 0;
 } else {
 return -1;
 }
}

function compareColor(colaA, colaB) {
 if (colaA.color > colaB.color) {
 return 1;
 } else if (colaA.color === colaB.color) {
 return 0;
 } else {
 return -1;
 }
}

products.sort(compareName);
console.log("Products sorted by name:");
printProducts(products);

products.sort(compareCalories);
console.log("Products sorted by calories:");
printProducts(products);

products.sort(compareColor);
console.log("Products sorted by color:");
printProducts(products);

Here’s our implementation
of each compare function.

For each new
compare function,
we call sort, and
display the results
in the console.

Totally!

this is a new chapter 475

Serious functions

11 anonymous functions, scope and closures

You’ve put functions through their paces, but there’s more
to learn. In this chapter we take it further; we get hard-core. We’re going to show

you how to really handle functions. This won’t be a super long chapter, but it will be

intense, and at the end you’re going to be more expressive with your JavaScript than

you thought possible. You’re also going to be ready to take on a coworker’s code,

or jump into an open source JavaScript library, because we’re going to cover some

common coding idioms and conventions around functions. And if you’ve never heard of

an anonymous function or a closure, boy are you in the right place.

And if you have heard of a closure, but
don’t quite know what it is, you’re even
more in the right place!

I’ve become 200%
more expressive

since I’ve learned about
anonymous functions.

Contents
Taking a look at the other side of functions... 476

How to use an anonymous function 477

We need to talk about your verbosity, again 479

When is a function defined? It depends... 483

What just happened? Why wasn't fly defined? 484

How to nest functions 485

How nesting affects scope 486

A little review of lexical scope 488

Where things get interesting with lexical scope 489

Functions Revisited 491

Calling a function (revisited) 492

What the heck is a closure? 495

Closing a function 496

Using closures to implement a magic counter 498

Test drive your magic counter 499

Looking behind the curtain... 499

Creating a closure by passing a function expression as an argument 501

The closure contains the actual environment, not a copy 502

Creating a closure with an event handler 503

Click me! without a closure 504

Click me! with a closure 504

Test drive your button counter 505

How the Click me! closure works 506

476 Chapter 11

intro to anonymous functions

function handler() { alert("Yeah, that page loaded!"); }

window.onload = handler;

Here’s a load handler, set up like
we’ve always done in the past.

First we define a function.
This function has a name, handler.

Then we assign the function to the onload property of the window object, using its name, handler.
And when the page loads, the
handler function is invoked.

You’ve already seen two sides of functions—you’ve seen the formal, declarative
side of function declarations, and you’ve seen the looser, more expressive side of
function expressions. Well, now it’s time to introduce you to another interesting
side of functions: the anonymous side.

By anonymous we’re referring to functions that don’t have names. How can that
happen? Well, when you define a function with a function declaration, your
function will definitely have a name. But when you define a function using a function
expression, you don’t have to give that function a name.

You’re probably saying, sure, that’s an interesting fact, maybe it’s possible, but so
what? By using anonymous functions we can often make our code less verbose,
more concise, more readable, more efficient, and even more maintainable.

So let’s see how to create and use anonymous functions. We’ll start with a piece of
code we’ve seen before, and see how an anonymous function might help out:

Taking a look at the other side of functions...

Use your knowledge of functions and variables
and check off the true statements below.

 ❏ The handler variable holds a function
reference.

 ❏ When we assign handler to window.onload,
we’re assigning it a function reference.

 ❏ The only reason the handler variable exists is
to assign it to window.onload.

 ❏ We’ll never use handler again as it’s code
that is meant to run only when the page first
loads.

 ❏ Invoking onload handlers twice is not a great
idea—doing so could cause issues given
these handlers usually do some initialization
for the entire page.

 ❏ Function expressions create function
references.

 ❏ Did we mention that when we assign
handler to window.onload, we’re assigning it
a function reference?

you are here 4 477

anonymous functions, scope and closures

window.onload = function() { alert("Yeah, that page loaded!"); }; Now the handler
has been assigned to
the window.onload
property without
the need for an
unnecessary name.

So, we’re creating a function to handle the load event, but we know it’s a “one time” function
because the load event only happens once per page load. We can also observe that the window.
onload property is being assigned a function reference—namely, the function reference in
handler. But because handler is a one time function, that name is a bit of a waste, because
all we do is assign the reference in it to the window.onload property.

Anonymous functions give us a way to clean up this code. An anonymous function is just a
function expression without a name that’s used where we’d normally use a function reference.
But to make the connection, it helps to see how we use a function expression in code in an
anonymous way:

Much more concise now. We’re assigning
the function we need directly to the
onload property. We also aren’t creating
a function name that might mistakenly
be used in other code (after all, handler
is a pretty common name!).

How to use an anonymous function

function handler() { alert("Yeah, that page loaded!"); }

window.onload = handler;
First remove the handler
variable so this becomes a
function expression.

 function() { alert("Yeah, that page loaded!"); }

window.onload = ;

Then assign the function
expression directly to the
window.onload property.

Look Ma!
No names!

Hint: are they hiding somewhere in your objects?

Are there places in your previous code that you’ve seen anonymous functions and hadn’t realized it?

478 Chapter 11

exercise for anonymous functions

There are a few opportunities in the code below to take advantage of anonymous
functions. Go ahead and rework the code to use anonymous functions wherever
possible. You can scratch out the old code and write in new code where needed. Oh, and
one more task: circle any anonymous functions that are already being used in the code.

window.onload = init;

var cookies = {

 instructions: "Preheat oven to 350...",

 bake: function(time) {

 console.log("Baking the cookies.");

 setTimeout(done, time);

 }

};

function init() {

 var button = document.getElementById("bake");

 button.onclick = handleButton;

}

function handleButton() {

 console.log("Time to bake the cookies.");

 cookies.bake(2500);

}

function done() {

 alert("Cookies are ready, take them out to cool.");

 console.log("Cooling the cookies.");

 var cool = function() {

 alert("Cookies are cool, time to eat!");

 };

 setTimeout(cool, 1000);

}

you are here 4 479

anonymous functions, scope and closures

function cookieAlarm() {

 alert("Time to take the cookies out of the oven");

};

setTimeout(cookieAlarm, 600000);

We need to talk about your verbosity, again
Okay, we hate to bring it up again because you’ve come a long way with
functions—you know how to pass functions around, assign them to variables, pass
them to functions, return them from functions—but, well, you’re still being a little
more verbose than you have to (you could also say you’re not being as expressive
as you could be). Let’s see an example:

And here we're taking the function and passing it
as an argument to setTimeout.

While this code looks fine, we can make it a bit tighter using anonymous functions.
How? Well, think about the cookieAlarm variable in the call to setTimeout. This
is a variable that references a function, so when we invoke setTimeout, a function
reference is passed. Now, using a variable that references a function is one way to get a
function reference, but just like with the window.onload example a couple of pages
back, you can use a function expression too. Let’s rewrite the code with a function
expression instead:

Here's a normal-looking function named
cookieAlarm that displays an alert about
cookies being done.

Looks like the cookies will be
done in 10 minutes, just sayin'.

In case you forgot, these are milliseconds,
so 1000 * 60 * 10 = 600,000.

setTimeout(function() { alert("Time to take the cookies out of the oven");}, 600000);

Now instead of a variable, we're just putting the
function, inline, in the call to setTimeout.

Here's the second
argument, after the
function expression.

Pay careful attention to the syntax here. We write
the entire function expression, which ends in a right
bracket, and then like any argument, we follow it with
a comma before adding the next argument.

We specify the name of the function we’re calling,
setTimeout, followed by a parenthesis and then
the first argument, a function expression.

480 Chapter 11

formatting anonymous function expressions

Who are you
trying to kid? That’s a mess.

Who wants to read that one long
line? And what if the function is
long and complicated?

For a short piece of code, a one liner
is just fine. But, beyond that, you’re right, it
would be rather silly. But as you know, we can use
lots of whitespace with JavaScript, so we can insert
all the spaces and returns we need to make things
more readable. Here’s our reformatting of the
setTimeout code on the previous page.

setTimeout(function() {

 alert("Time to take the cookies out of the oven");

 }, 600000);

All we’ve done is insert some whitespace-that
is, some spaces and returns here and there.

We’re glad you raised this
issue because the code is a
lot more readable this way.

you are here 4 481

anonymous functions, scope and closures

Hey, wait a sec, I think I get it. Because a
function expression evaluates to a function
reference, you can substitute a function

expression anywhere you’d expect a
reference?

That’s a mouthful, but you’ve got it.
This is really one of the keys to understanding
that functions are first class values. If your code
expects a function reference, then you can
always put a function expression in its place—
because it evaluates to a function reference.
As you just saw, if a function is expected as
an argument, no problem, you can pass it a
function expression (which, again, evaluates
to a reference before it is passed). If you need
to return a function from within a function,
same thing—you can just return a function
expression.

482 Chapter 11

questions about anonymous functions

Q: Using these anonymous functions
like this seems really esoteric. Do I really
need to know this stuff?

A: You do. Anonymous function
expressions are used frequently in
JavaScript code, so if you want to be able
to read other people’s code, or understand
JavaScript libraries, you’re going to need to
know how these work, and how to recognize
them when they’re being used.

Q: Is using an anonymous function
expression really better? I think it just
complicates the code and makes the code
hard to follow and read.

A: Give it some time. Over time, you’ll
be able to parse code like this more easily
when you see it, and there really are lots
of cases where this syntax decreases code
complexity, makes the code’s intention more
clear, and cleans up your code. That said,
overuse of this technique can definitely lead
to code that is quite hard to understand. But
stick with it and it’ll get easier to read and
more useful as you get the hang of it. You’re
going to encounter lots of code that makes
heavy use of anonymous functions, so it’s a
good idea to incorporate this technique into
your code toolbelt.

Q: If first class functions are so
useful, how come other languages don’t
have them?

A: Ah, but they do (and even the ones
that don’t are considering adding them). For
instance, languages like Scheme and Scala
have fully first class functions like JavaScript
does. Other languages, like PHP, Java (in
the newest version), C#, and Objective C
have some or most of the first class features
that JavaScript does. As more people are
recognizing the value of having first class
functions in a programming language, more
languages are supporting them. Each
language does it a little differently, however,
so be prepared for a variety of approaches
as you explore this topic in other languages.

Let’s make sure you have the syntax down for passing anonymous function expressions
to other functions. Convert this code from one that uses a variable (in this case vaccine)
as an argument to one that uses an anonymous function expression.

function vaccine(dosage) {
 if (dosage > 0) {
 inject(dosage);
 }
}

administer(patient, vaccine, time);

Write your version
here. And check
your answer
before moving on!

you are here 4 483

anonymous functions, scope and closures

var migrating = true;

if (migrating) {

 quack(4);

 fly(4);

}

var fly = function(num) {

 for (var i = 0; i < num; i++) {

 console.log("Flying!");

 }

};

function quack(num) {

 for (var i = 0; i < num; i++) {

 console.log("Quack!");

 }

}

When is a function defined? It depends...
There’s one fine point related to functions that we haven’t mentioned yet. Remember that the browser
takes two passes through your JavaScript code: in the first pass, all your function declarations are parsed
and the functions defined; in the second pass, the browser executes your code top down, which is when
function expressions are defined. Because of this, functions created by declarations are defined before
functions that are created using function expressions. And this, in turn, determines where and when
you can invoke a function in your code.

To see what that really means, let’s take a look at a concrete example. Here’s our code from the last
chapter, rearranged just a bit. Let’s evaluate it:

Notice that
we moved this
conditional
up from the
bottom of
the code.

1

2

We start at the top of the code and find all the function declarations.

We found a function declaration. We create the
function and assign it to the variable quack.

4 We start at the top again, this time evaluating the code.

3 We reach the bottom. Only one function declaration was found.

5 Create the variable migrating and set it to true.

6 The conditional is true, so evaluate the code block.

7 Get the function reference from quack and
invoke it with the argument 4.

8 Get the function reference from fly... oh wait,
fly isn’t defined!

IMPORTANT: Read this
by following the order of
the numbers. Start at 1,
then go to 2, and so on.

484 Chapter 11

when are functions defined?

What just happened? Why wasn't fly defined?

var migrating = true;

if (migrating) {

 quack(4);

 fly(4);

}

var fly = function(num) {

 for (var i = 0; i < num; i++) {

 console.log("Flying!");

 }

};

function quack(num) {

 for (var i = 0; i < num; i++) {

 console.log("Quack!");

 }

}

Okay, we know the fly function is undefined when we try to invoke it, but
why? After all, quack worked just fine. Well, as you’ve probably guessed by now,
unlike quack—which is defined on the first pass through the code because it is
a function declaration—the fly function is defined along with the normal top-
to-bottom evaluation of the code. Let’s take another look:

When we evaluate this code to try invoking quack,
everything works as expected because quack was
defined on the first pass through the code.

But when we try to execute
the call to the fly function,
we get an error because we
haven’t yet defined fly...

JavaScript console
Quack!

Quack!

Quack!

Quack!

TypeError: undefined is not a function

What happens when you try to
call a function that’s undefined.

So what does this all mean? For starters, it means that you can place function
declarations anywhere in your code—at the top, at the bottom, in the middle—and
invoke them wherever you like. Function declarations at the top level of your code create
functions that are defined everywhere in your code (this is known as hoisting).

Function expressions are obviously different because they aren’t defined until they are
evaluated. So, even if you assign the function expression to a global variable, like we did
with fly, you can’t use that variable to invoke a function until after it’s been defined.

Now in this example, both of our functions have global scope—meaning both functions
are visible everywhere in your code once they are defined. But we also need to consider
nested functions—that is functions defined within other functions—because it affects the
scope of those functions. Let’s take a look.

...because fly doesn’t
get defined until
this statement is
evaluated, which is
after the call to fly.

You might see an error like
this instead (depending on
the browser you’re using):
TypeError: Property ‘fly’
of object [object Object]
is not a function.

you are here 4 485

anonymous functions, scope and closures

How to nest functions
It’s perfectly legal to define a function within another function, meaning you can use a
function declaration or expression inside another function. How does this work? Here’s the
short answer: the only difference between a function defined at the top level of your code and
one that’s defined within another function is just a matter of scope. In other words, placing a
function in another function affects where the function is visible within your code.

To understand this, let’s expand our example a little by adding some nested function
declarations and expressions.

var migrating = true;

var fly = function(num) {

 var sound = "Flying";

 function wingFlapper() {

 console.log(sound);

 }

 for (var i = 0; i < num; i++) {

 wingFlapper();

 }

};

function quack(num) {

 var sound = "Quack";

 var quacker = function() {

 console.log(sound);

 };

 for (var i = 0; i < num; i++) {

 quacker();

 }

}

if (migrating) {

 quack(4);

 fly(4);

}

We’ve moved this code back to
the bottom so we no longer get
that error when we call fly.

Here we’re adding a function
declaration with the name
wingFlapper inside the fly
function expression.

Here we’re adding a function
expression assigned to the
quacker variable inside the
quack function declaration.

And here we’re calling it.

And here we’re calling it.

In the code above, take a pencil and mark where you think the scope of the
fly, quack, wingFlapper and quacker functions are. Also, mark any places you
think the functions might be in scope but undefined.

486 Chapter 11

function nesting and scope

How nesting affects scope

Everything defined at the top level of
the code has global scope. So fly and
quack are both global variables.

wingFlapper is defined by a function
declaration in the fly function. So its scope
is the entire fly function, and it’s defined
throughout the entire fly function body.

quacker is defined by a function expression in
the function quack. So its scope is the entire
quack function but it’s defined only after the
function expression is evaluated, until the end
of the function body.

Functions defined at the top level of your code have global scope,
whereas functions defined within another function have local
scope. Let’s make a pass over this code and look at the scope of
each function. While we’re at it, we’ll also look at where each
function is defined (or, not undefined, if you prefer):

Notice that the rules for when you can refer to a function are
the same within a function as they are at the top level. That is,
within a function, if you define a nested function with a declaration,
that nested function is defined everywhere within the body of
the function. On the other hand, if you create a nested function
using a function expression, then that nested function is defined only
after the function expression is evaluated.

var migrating = true;

var fly = function(num) {

 var sound = "Flying";

 function wingFlapper() {

 console.log(sound);

 }

 for (var i = 0; i < num; i++) {

 wingFlapper();

 }

};

function quack(num) {

 var sound = "Quack";

 var quacker = function() {

 console.log(sound);

 };

 for (var i = 0; i < num; i++) {

 quacker();

 }

}

if (migrating) {

 quack(4);

 fly(4);

}

quacker is only
defined here.

But remember fly is defined only after
this function expression is evaluated.

Q: When we pass a function expression to
another function, that function must get stored in
a parameter, and then treated as a local variable
in the function we passed it to. Is that right?

A: That’s exactly right. Passing a function as an
argument to another function copies the function
reference we’re passing into a parameter variable
in the function we’ve called. And just like any other
parameter, a parameter holding a function reference
is a local variable.

you are here 4 487

anonymous functions, scope and closures

var secret = "007";

function getSecret() {

 var secret = "008";

 function getValue() {

 return secret;

 }

 return getValue;

}
var getValueFun = getSecret();

getValueFun();

Specimen #2

We need a first class functions expert and we’ve heard that’s you! Below you’ll find two pieces
of code, and we need your help figuring out what this code does. We’re stumped. To us, these look
like nearly identical pieces of code, except that one uses a first class function and the other doesn’t.
Knowing everything we do about JavaScript scope, we expected Specimen #1 to evaluate to 008 and
Specimen #2 to evaluate to 007. But they both result in 008! Can you help us figure out why?

EXTREME JAVASCRIPT ChALLENGE

var secret = "007";

function getSecret() { var secret = "008";
 function getValue() { return secret; }
 return getValue();}

getSecret();

Specimen #1
We recommend you form a
strong opinion, jot it down
on this page, and then turn
the page.

Don’t look at the solution
at the end of the chapter
just yet; we’ll revisit this
challenge a little bit later.

488 Chapter 11

lexical scope

var justAVar = "Oh, don't you worry about it, I'm GLOBAL";

function whereAreYou() {
 var justAVar = "Just an every day LOCAL";

 return justAVar;
}

var result = whereAreYou();
console.log(result);

var justAVar = "Oh, don't you worry about it, I'm GLOBAL";

function whereAreYou() {
 var justAVar = "Just an every day LOCAL";

 function inner() {
 return justAVar;
 }

 return inner();
}

var result = whereAreYou();
console.log(result);

A little review of lexical scope
While we’re on the topic of scope, let’s quickly
review how lexical scope works:

Here's the same function.

And shadow variable.

So when we call whereAreYou,
the inner function is invoked, and
returns the value of the local
justAVar, not the global one.

JavaScript console
Just an every day LOCAL

Here we have a global
variable called justAVar.

And this function defines
a new lexical scope...

...in which we have a local variable, justAVar, that
shadows the global variable of the same name.

When this function is called, it returns justAVar. But which one?
We're using lexical scope, so we find the justAVar value by looking
in the nearest function scope. And if we can't find it there, we
look in the global scope.

So when we call whereAreYou, it returns the value of the local justAVar, not the global one.

JavaScript console

Just an every day LOCAL

Now let’s introduce a nested function:

But now we have a nested function, that refers to
justAVar. But which one? Well, again, we always use
the variable from the closest enclosing function. So
we're using the same variable as the last time.

Lexical just means you can determine the

scope of a variable by readin
g the structure

of the code, as opposed to w
aiting until the

code runs to figure it out.

Notice that we’re calling inner here,
and returning its result..

you are here 4 489

anonymous functions, scope and closures

var justAVar = "Oh, don't you worry about it, I'm GLOBAL";

function whereAreYou() {
 var justAVar = "Just an every day LOCAL";

 function inner() {
 return justAVar;
 }

 return inner;
}

var innerFunction = whereAreYou();
var result = innerFunction();
console.log(result);

Where things get interesting with lexical scope
Let’s make one more tweak. Watch this step carefully; it’s a doozy:

No changes at all here, same
variables and functions.

But rather than invoking inner, we
return the inner function.

So when we call whereAreYou, we get back a
reference to inner function, which we assign
to the innerFunction variable. Then we invoke
innerFunction, capture its output in result
and display the result.

So when inner is invoked here (as
innerFunction), which justAVar is used?
The local one, or the global one?

Not so fast. With lexical scope what
matters is the structure in which the

function is defined, so the result has to be
the value of the local variable, or ”Just an

everyday LOCAL”.

What matters is when
the function is invoked. We invoke

inner after it’s returned, when the global
version of justAVar is in scope, so we’ll get
“Oh don’t worry about it, I’m GLOBAL”.

490 Chapter 11

fighting about functions

I’m right!

Wrong!!!!

While these dummies
were fighting, I pulled out the

JavaScript language reference, and
it looks like we were right. The code

outputs “Just an everyday LOCAL”.

Frank: What do you mean you’re right? That’s like defying the laws of physics or something. The local variable doesn’t
even exist anymore… I mean, when a variable goes out of scope it ceases to exist. It’s derezzed! Didn’t you see TRON!?

Judy: Maybe in your weak little C++ and Java languages, but not in JavaScript.

Jim: Seriously, how is that possible? The whereAreYou function has come and gone, and the local version of
justAVar couldn’t possibly exist anymore.

Judy: If you’d listen to what I just told you… In JavaScript that’s not how it works.

Frank: Well, throw us a bone Judy. How does it work?

Judy: When we define the inner function, the local justAVar is in the scope of that function. Now lexical scope says
how we define things is what matters, so if we’re using lexical scope, then whenever inner is invoked, it assumes it still
has that local variable around if it needs it.

Frank: Yeah, but like I already said, that’s like defying the laws of physics. The whereAreYou function that defined the
local version of the justAVar variable is over. It doesn’t exist any more.

Judy: True. The whereAreYou function is done, but the scope is still around for inner to use.

Jim: How is that?

Judy: Well, let’s see what REALLY happens when we define and return a function…

EDITOR'S NOTE: Did
Joe change his shirt
between pages!?

you are here 4 491

anonymous functions, scope and closures

justAVar =

 "Just an... LOCAL"

function whereAreYou() {

 var justAVar = "Just an every day LOCAL";

 function inner() {
 return justAVar;
 }

 return inner;
}

Functions Revisited
We have a bit of a confession to make. Up until now we haven’t told you everything
about a function. Even when you asked “What does a function reference actually
point to?” we kinda skirted the issue. “Oh just think of it like a crystallized function
that holds the function’s code block,” we said.

Well now it’s time to show you everything.

To do that, let’s walk through what really happens at runtime with this code, starting
with the whereAreYou function:

This is the environment. It holds all the
variables defined in the local scope.

We then create a function,
with the name inner.

In this example, the environment just has one variable, the justAVar variable.

function inner() {
 return justAVar;
}

inner

And finally, when we return
the function, we don’t just
return the function; we
return the function with the
environment attached to it.

1

2

4

3

function inner() {
 return justAVar;
}

Every function has an attached
environment, which contains the local
variables within its enclosing scope.

So, let's see how this
gets used when we call
the function inner...

justAVar =

 "Just an... LOCAL"

First we encounter a local variable, named
justAVar. We assign the string “Just an
every day LOCAL” to the variable.

We haven’t mentioned this before,
but all local variables are stored in an
environment.

492 Chapter 11

functions and lexical scope

Calling a function (revisited)
Now that we have the inner function, and its environment, let’s invoke inner
and see what happens. Here’s the code we want to evaluate:

1

var innerFunction = whereAreYou();
var result = innerFunction();
console.log(result);

inner
Function

var innerFunction = whereAreYou();

First, we call whereAreYou. We already know that returns a function
reference. So we create a variable innerFunction and assign it that
function. Remember, that function reference is linked to an environment.

After this statement we have a
variable innerFunction that refers to
the function (plus an environment)
returned from whereAreYou. Our new variable.

The function, and its environment.

var result = innerFunction();

Next we call innerFunction. To do that we evaluate the code in the
function’s body, and do that in the context of the function’s environment,
like this:

function inner() {
 return justAVar;
}

inner
Function

The function has a single statement that
returns justAVar. To get the value of
justAVar we look in the enviroment.

2

function inner() {
 return justAVar;
}

justAVar =

 "Just an... LOCAL"

justAVar =

 "Just an... LOCAL"

justAVar has the
value “Just an every
day LOCAL". So we
return that.

you are here 4 493

anonymous functions, scope and closures

var result = innerFunction();
console.log(result);

Last, we assign the result of the function to the result variable,
and then display it in the console.

result

t
an
 e
ve
ry
 d
ay
 L
OC
AL
"

JavaScript console

Just an every day LOCAL

Wait a sec... Judy hasn’t
mentioned closures? That looks
related to what we’re doing. Let’s
see if we can study up on that and
use them to one-up her.

innerFunction returns the value “Just an every
day LOCAL", which it got from its environment.
So, we throw that into the result variable.

And then all we have to do is display that
string in the console.

3

Darn it! Judy
was right again.

Uh, guys... this
IS a closure. You’d better
read up on them.

494 Chapter 11

questions about lexical scope

Q: When you say that lexical scope determines where a
variable is defined, what do you mean?

A: By lexical scope we mean that JavaScript’s rules for scoping
are based purely on the structure of your code (not on some dynamic
runtime properties). This means you can determine where a variable
is defined by simply examining your code’s structure. Also remember
that in JavaScript only functions introduce new scope. So, given a
reference to a variable, look for where that variable is defined in a
function from the most nested (where it’s used) to the least nested
until you find it. And if you can’t find it in a function, then it must be
global, or undefined.

Q: If a function is nested way down many layers, how does
the environment work then?

A: We used a simplistic way of showing the environment to
explain it, but you can think of each nested function as having its own
little environment with its own variables. Then, what we do is create
a chain of the environments of all the nested functions, from inner to
outer.

So, when it comes to finding a variable in the environment, you
start at the closest one, and then follow the chain until you find your
variable. And, if you don’t find it, you look in the global environment.

Q: Why are lexical scoping and function environments good
things? I would have thought the answer in that code example
would be “Oh, don’t you worry about it, I’m GLOBAL”. That
makes sense to me. The real answer seems confusing and
counterintuitive.

A: We can see how you might think that, but the advantage of
lexical scope is that we can always look at the code to determine
the scope that’s in place when a variable is defined, and figure out
what its value should be from that. And, as we’ve seen, this is true
even if you return a function and invoke it much later in a place totally
outside of its original scope.

Now there is another reason you might consider this a good thing,
and that is the kind of things we can do in code with this capability.
We’re going to get to that in just a bit.

Q: Do parameter variables get included in the environment
too?

A: Yes. As we’ve said before, you can consider parameters to
be local variables in your functions, so they are included in the
environment as well.

Q: Do I need to understand how the environment works in
detail?

A: No. What you need to understand is the lexical scoping rules
for JavaScript variables, and we’ve covered that. But now you know
that if you have a function that is returned from within a function, it
carries its environment around with it.

Remember that JavaScript functions are always
evaluated in the same scoping environment in which
they were defined. Within a function, if you want to
determine where a variable is coming from, search in
its enclosing functions, from the most nested to the least.

you are here 4 495

anonymous functions, scope and closures

What the heck is a closure?
Sure, everyone talks about closures as the must have language feature, but how many people
actually get what they are or how to use them? Darn few. It’s the language feature everyone
wants to understand and the feature every traditional language wants to add.

Here’s the problem. According to many well-educated folks in the business, closures are hard.
But that’s really not a problem for you. Want to know why? No, no, it’s not because this is a

“brain friendly book” and no, it’s not because we have a killer application that needs to be built
to teach closures to you. It’s because you just learned them. We just didn’t call them closures.

So without further ado, we give you the super-formal definition. If you’ve been trained well in this
book you should be thinking at
this point, “Ah, this is the ‘get a
big raise’ knowledge.”Closure, noun: A closure is a function

together with a referencing environment.

Okay, we agree that definition isn’t totally illuminating. But why is it called closure? Let’s
quickly walk through that, because—seriously—this could be one of those make-or-break job
interview questions, or the thing that gets you that raise at some point in the future.

To understand the word closure, we need to understand the idea of “closing” a function.

Here’s your task: (1) find all the free variables in the code below and circle them. A free
variable is one that isn't defined in the local scope. (2) Pick one of the environments on the
right that closes the function. By that we mean that it provides values for all the free variables.

function justSayin(phrase) {
 var ending = "";
 if (beingFunny) {
 ending = " -- I'm just sayin!";
 } else if (notSoMuch) {
 ending = " -- Not so much.";
 }
 alert(phrase + ending);
}

Pick one of these that
closes the function.

Circle the free variables in this
code. Free variables are not
defined in the local scope.

beingFunny = true;

notSoMuch = false;

inConversationWith = "Paul";

beingFunny = true;

justSayin = false;

oocoder = true;

notSoMuch = true;

phrase = "Do do da";

band = "Police";

496 Chapter 11

defining closure

Closing a function

function justSayin() {
 // code here
}

 Closure

You probably figured this out in the previous exercise, but
let’s run through it one more time: a function typically has
local variables in its code body (including any parameters it has),
and it also might have variables that aren’t defined locally,
which we call free variables. The name free comes from the fact
that within the function body, free variables aren’t bound
to any values (in other words, they’re not declared locally
in the function). Now, when we have an environment that
has a value for each of the free variables, we say that we’ve
closed the function. And, when we take the function and the
environment together, we say we have a closure. If a variable in my function

body isn’t defined locally, and it’s
not a global, you can bet it’s from a
function I’m nested in, and available in
my environment.

A closure results when we combine a
function that has free variables with
an environment that provides variable
bindings for all those free variables.

beingFunny = true;

notSoMuch = false;

inConversationWith = "Paul";

you are here 4 497

anonymous functions, scope and closures

We’re about ten
pages into this topic.

Are we ever going back to real-world
JavaScript? Or are we staying in

theory land forever? Why do I really care
how all this low-level function stuff works?

I just need to write functions and call
them, right?

If closures weren’t so darned useful, we’d agree.
We’re sorry we had to drag you through the learning curve on
closures but we assure you, it is well worth it. You see, closures aren’t
just some theoretical functional programming language construct;
they’re also a powerful programming technique. Now that you’ve
got how they work down (and we’re not kidding that understanding
closures is what’s going to raise your cred among your managers and
peers) it’s time to learn how to use them.

And here’s the thing: they’re used all over the place. In fact they’re
going to become so second nature to you that you’ll find yourself
using them liberally in your code. Anyway, let’s get to some closure
code and you’ll see what we’re talking about.

498 Chapter 11

implementing a counter with closures

Using closures to implement a magic counter
Ever think of implementing a counter function? It usually goes like this:

var count = 0;

function counter() {
 count = count + 1;
 return count;
}

The only issue with this is that we have to use a global variable for count, which can
be problematic if you’re developing code with a team (because people often use the
same names, which end up clashing).

What if we were to tell you there is a way to implement a counter with a totally local
and protected count variable? That way, you’ll have a counter that no other code
can ever clash with, and the only way to increment the counter value is through the
function (otherwise known as a closure).

To implement this with a closure, we can reuse most of the code above. Watch and
be amazed:

function makeCounter() {
 var count = 0;

 function counter() {
 count = count + 1;
 return count;
 }
 return counter;
}

And we can use our counter like this:

console.log(counter());
console.log(counter());
console.log(counter());

JavaScript console

1
2
3

We have a global variable count.

Each time we call counter, we
increment the global count variable,
and return the new value.

So we can count
and display the
value of the
counter like this.

Here, we’re putting the count variable in
the function makeCounter. So now count
is a local variable, not a global variable.

Now, we create the counter
function, which increments
the count variable.

And return the counter function.

Think this magic trick will work? Let’s try it and see…

This is the closure. It holds count in its environment.

you are here 4 499

anonymous functions, scope and closures

Test drive your magic counter

function makeCounter() {
 var count = 0;

 function counter() {
 count = count + 1;
 return count;
 }
 return counter;
}
var doCount = makeCounter();
console.log(doCount());
console.log(doCount());
console.log(doCount());

Looking behind the curtain...

We added a bit of testing code to test the counter. Give it a try!

JavaScript console

1
2
3

Our counter works... we get
solid counting results.

Let’s step through the code to see how the counter works.

function makeCounter() {
 var count = 0;

 function counter() {
 count = count + 1;
 return count;
 }
 return counter;
}
var doCount = makeCounter();
console.log(doCount());
console.log(doCount());
console.log(doCount());

var count = 0;
function counter() {
 count = count + 1;
 return count;
}

When we call
makeCounter, we
get back a closure:
a function with an
environment.

1 We call makeCounter, which creates a
counter function and returns it along with an
environment containing the free variable, count.
In other words, it creates a closure. The function
returned from makeCounter is stored in doCount.

2 We call the function doCount. This executes the
body of the counter function.

3 When we encounter the variable count, we look it
up in the environment, and retrieve its value. We
increment count, save the new value back into
the environment, and return that new value to
where doCount was called.

4 We repeat steps 2 and 3 each time we call doCount.

When we call doCount (which is a reference to counter) and
need to get the value of count, we use the count variable
that’s in the closure’s environment. The outside world (the
global scope) never sees the variable count. But we can use it
anytime we call doCount. And there’s no other way to get to
count except by calling doCount.

1

2

3

4

This is a
closure.

500 Chapter 11

exercise for closures

It’s your turn. Try creating the following closures. We realize this is not an easy task at first,
so refer to the answer if you need to. The important thing is to work your way through these
examples, and get to the point where you fully understand them.

function makePassword(password) {

 return __________________________ {

 return (passwordGuess === password);

 };

}

First up for 10pts: makePassword takes a password as an argument and returns a function
that accepts a password guess and returns true if the guess matches the password
(sometimes you need to read these closure descriptions a few times to get them):

function multN(n) {

 return __________________________ {

 return _____________;

 };

}

Next up for 20pts: the multN function takes a number (call it n) and returns a function. That
function itself takes a number, multiplies it by n and returns the result.

Last up for 30 pts: This is a modification of the counter we just created. makeCounter
takes no arguments, but defines a count variable. It then creates and returns an object
with one method, increment. This method increments the count variable and returns it.

you are here 4 501

anonymous functions, scope and closures

Creating a closure by passing a
function expression as an argument

function makeTimer(doneMessage, n) {

 setTimeout(function() {

 alert(doneMessage);

 }, n);

}

makeTimer("Cookies are done!", 1000);

Returning a function from a function isn’t the only way to create a closure. You
create a closure whenever you have a reference to a function that has free variables,
and that function is executed outside of the context in which it was created.

Another way we can create a closure is to pass a function to a function. The
function we pass will be executed in a completely different context than the one in
which it was defined. Here’s an example:

We have a function...
...with a free variable...

...and this function will be executed 1000
milliseconds from now, long after the
function makeTimer has completed.

Here, we’re passing a function expression that contains a free variable,
doneMessage, to the function setTimeout. As you know, what happens is we
evaluate the function expression to get a function reference, which is then passed
to setTimeout. The setTimeout method holds on to this function (which
is a function plus an environment—in other words, a closure) and then 1000
milliseconds later it calls that function.

And again, the function we’re passing into setTimeout is a closure because it
comes along with an environment that binds the free variable, doneMessage, to the
string “Cookies are done!”.

...that we are using as a handler for setTimeout.

What would happen
if our code looked
like this instead?

function handler() {
 alert(doneMessage);
}
function makeTimer(doneMessage, n) {
 setTimeout(handler, n);
}
makeTimer("Cookies are done!", 1000);

2

Revisit the code on page
412 in Chapter 9. Can you
modify your code to use a
closure, and eliminate the
need for the third argument
to setTimeout?

502 Chapter 11

the closure contains the environment

function setTimer(doneMessage, n) {

 setTimeout(function() {
 alert(doneMessage);
 }, n);

 doneMessage = "OUCH!";
}
setTimer("Cookies are done!", 1000);

The closure contains the actual environment, not a copy

var doneMessage =
"Cookies are done!"

function() {
 alert(doneMessage);
}

var doneMessage =
 "OUCH!"

function() {
 alert(doneMessage);
}

setTimeout(function() {

 alert(doneMessage);

}, n);

1 When we call setTimeout and pass to it the function
expression, a closure is created containing the
function along with a reference to the environment.

2 Then, when we change the value of
doneMessage to “OUCH!” outside of the closure,
it’s changed in the same environment that is
used by the closure.

3 1000 milliseconds later, the function in the closure
is called. This function references the doneMessage
variable, which is now set to “OUCH!” in the
environment, so we see “OUCH!” in the alert.

doneMessage = "OUCH!";

function() { alert(doneMessage); }

When the function is called, it uses
the value for

doneMessage that’s in the environment, which is

the new value we set it to earlier, in setTimer.

Now we’re changing the
value of doneMessage after
we call setTimeout.

The closure is created here.

One thing that often misleads people learning closures is that they think the environment in the
closure must have a copy of all the variables and their values. It doesn’t. In fact, the environment
references the live variables being used by your code, so if a value is changed by code outside your
closure function, that new value is seen by your closure function when it is evaluated.

Let’s modify our example to see what that means.

you are here 4 503

anonymous functions, scope and closures

Creating a closure with an event handler

<!doctype html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>Click me!</title>

<style>

 body, button { margin: 10px; }

 div { padding: 10px; }

</style>

<script>

 // JavaScript code here

</script>

</head>

<body>

 <button id="clickme">Click me!</button>

 <div id="message"></div>

</body>

</html>

Let’s look at one more way to create a closure. We’ll create a closure with an event handler,
which is something you’ll see fairly often in JavaScript code. We’ll start by creating a simple
web page with a button and a <div> element to hold a message. We’ll keep track of how
many times you click the button and display the tally in the <div>.

Here’s the HTML and a tiny bit of CSS to create the page. Go ahead and add the HTML and
CSS below into a file named “divClosure.html”.

Here’s what we’re going for:
each time you click the button,
the message in the <div> will be
updated to show the number of
times you’ve clicked.

Next, let’s write the code. Now, you could write the code for this example without using
a closure at all, but as you’ll see, by using a closure, our code is more concise, and even a
bit more efficient.

Just your typical, basic web page...

With a little CSS to style the
elements in the page.

Here’s where our code’s going to go.

We have a button, and a <div> to hold the m
essage

we’ll update each time you click the button.

504 Chapter 11

using a closure with an event handler

window.onload = function() {

 var count = 0;

 var message = "You clicked me ";

 var div = document.getElementById("message");

 var button = document.getElementById("clickme");

 button.onclick = function() {

 count++;

 div.innerHTML = message + count + " times!";

 };

};

Click me! without a closure
Let’s first take a look at how you’d implement this example without a closure.

var count = 0;

window.onload = function() {

 var button = document.getElementById("clickme");

 button.onclick = handleClick;

};

function handleClick() {

 var message = "You clicked me ";

 var div = document.getElementById("message");

 count++;

 div.innerHTML = message + count + " times!";

}

The count variable will need to be a global variable, because if i
t's

local to handleClick (the click event handler on the button
, see

below), it'll just get re-initialized every time we click.

In the load event handler function, we
get the button element, and add a click
handler to the onclick property.

Here's the button's click handler function.

We define the message variable...

...get the <div> element from the page...
...increment the counter...
...and update the <div> with the message containing how many times we've clicked.

The version without a closure looks perfectly reasonable, except for that global
variable which could potentially cause trouble. Let’s rewrite the code using a closure
and see how it compares. We’ll show the code here, and take a closer look after we
test it.

Click me! with a closure

Now, all our variables are local to window.onload.
No problems with name clashing now.

We’re setting up the click handler
as a function expression assigned
to the button’s onclick property,
so we can reference div, message
and count in the function.
(Remember your lexical scoping!)

This function has three free variables: div, message and count,
so a closure is created for the click handler function. So what
gets assigned to the button’s onclick property is a closure.

you are here 4 505

anonymous functions, scope and closures

Test drive your button counter
Okay, let’s bring the HTML and the code together in your

“divClosure.html” file and give this a test run. Go ahead and
load the page and then click on the button to increment the
counter. You should see the message update in the <div>. Look
at the code again, and make sure you think you know how this
all works. After you’ve done so, turn the page and we’ll walk
through it together.

<!doctype html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>Click me!</title>

<style>

 body, button { margin: 10px; }

 div { padding: 10px; }

</style>

<script>

 window.onload = function() {

 var count = 0;

 var message = "You clicked me ";

 var div = document.getElementById("message");

 var button = document.getElementById("clickme");

 button.onclick = function() {

 count++;

 div.innerHTML = message + count + " times!";

 };

 };

</script>

</head>

<body>

 <button id="clickme">Click me!</button>

 <div id="message"></div>

</body>

</html>

Here’s what we got.

Update your “divClosure.html”
file like this.

506 Chapter 11

stepping through how the closure works

window.onload = function() {

 var count = 0;

 var message = "You clicked me ";

 var div = document.getElementById("message");

 var button = document.getElementById("clickme");

 button.onclick = function() {

 count++;

 div.innerHTML = message + count + " times!";

 };

};

How the Click me! closure works

function() {
 count++;
 div.innerHTML = ...;
}

var message =
 "You clicked me ";

var count = 0;

var div = [object]

And now I’ll assign
that closure to the onclick

property of the Click me! button in the
page. Okay done with the load handler...
now I’ve just got to wait for someone to

click the button.

To understand how the closure works, let’s follow along with
the browser once again, as it evaluates this code…

The page has loaded so I can
run the load handler. I’ve got some variables
to define... Oh, and I see I’ve got a function
expression. Let’s see... that’s referencing three
free variables, so I’d better make a closure.

The browser creates a closure for the function
that’s assigned to the button.onclick prope

rty.
The environment has the div variable, the
message variable and the count variable.

Once the window.onload function
completes, nothing happens until
you click on the Click me! button.

you are here 4 507

anonymous functions, scope and closures

Hey, someone clicked
the button! Time to execute
that click handler function I

stashed away earlier...

function() {
 count++;
 div.innerHTML = ...;
}

var message =
 "You clicked me ";

var count = 0;

var div = [object]
Oh, I see we have a

closure. Good, that means
I can find values for the free
variables in the environment.

onclick

Even though the button variable doesn’t
exist anymore (it goes away when the
window.onload function has completed), the
button object is in the DOM, and it has
our closure stored in its onclick property.

function() {
 count++;
 div.innerHTML = ...;
}

var message =
 "You clicked me ";

var count = 1;

var div = [object]

I’ve incremented the
count variable by one and made sure
the value is updated in the environment.
And I’ve updated the message in the page,
so now all I have to do is wait for

another click.

Notice that the div variable in the closure h
olds an object.

When div was initialized in window.onload we stored the

object returned by document.getElementById in the div

variable, so we don’t have to get the object from the

DOM again; we have it already. This saves us a little bit of

computation and makes our code just a tiny bit faster.

The closure doesn’t go away
until you close the page. It’s
ready to spring into action
whenever you click the button!

508 Chapter 11

closure extreme challenge

We need a closures expert and we’ve heard that’s you! Now you know how closures work, can you
figure out why both specimens below evaluate to 008? To figure it out, write any variables that are
captured in the environments for the functions below. Note that it’s perfectly fine for an environment
to be empty. Check your answer at the end of the chapter.

EXTREME JAVASCRIPT ChALLENGE

var secret = "007";

function getSecret() {

 var secret = "008";

 function getValue() {

 return secret;

 }

 return getValue();

}

getSecret();

Specimen #1

var secret = "007";

function getSecret() {

 var secret = "008";

 function getValue() {

 return secret;

 }

 return getValue;

}

var getValueFun = getSecret();

getValueFun();

Specimen #2

revisited

Environment

Environment

you are here 4 509

anonymous functions, scope and closures

First, check out this code:

(function(food) {

 if (food === "cookies") {

 alert("More please");

 } else if (food === "cake") {

 alert("Yum yum");

 }

 })("cookies");

Your task is to figure out not just what this code computes, but
how it computes. To do that, go in reverse. That is, take out the
anonymous function, assign it to a variable, and then use that
variable where the function expression used to be. Is the code
more obvious now? So, what does it do?

Using a function expression in place of a reference, taken to the extreme.

510 Chapter 11

chapter summary

 � An anonymous function is a
function expression that has no
name.

 � Anonymous functions can make your
code more concise.

 � A function declaration is defined
before the rest of your code is
evaluated.

 � A function expression is evaluated
at runtime with the rest of your
code, and so is not defined until
the statement in which it appears is
evaluated.

 � You can pass a function expression
to another function, or return a
function expression from a function.

 � A function expression evaluates to a
function reference, so you can use
a function expression anywhere you
can use a function reference.

 � Nested functions are functions
defined inside another function.

 � A nested function has local scope,
just like other local variables.

 � Lexical scope means that we can
determine the scope of a variable by
reading our code.

 � To bind the value of a variable in a
nested function, use the value that’s
defined in the closest enclosing
function. If no value is found, then
look in the global scope.

 � Closures are a function along with a
referencing environment.

 � A closure captures the value of
variables in scope at the time the
closure is created.

 � Free variables in the body of a
function are variables that are not
bound in the body of that function.

 � If you execute a function closure in
a different context in which it was
created, the values of free variables
are determined by the referencing
environment.

 � Closures are often used to capture
state for event handlers.

you are here 4 511

anonymous functions, scope and closures

JavaScript cross
Time for another crossword puzzle to burn some
JavaScript into those neuron pathways.

1

2 3

4 5

6 7 8

9 10

11

12 13

14 15

16

17

18

Across
4. A function declaration nested in another

function has _______ scope.
6. When we tried to call fly before it was

defined, we got this kind of error.
9. wingFlapper is a _________ function.

12. We often use setTimeout to create a timer
for making ______.

13. A function expression assigned to a variable
at the top level of your code has ________
scope.

14. To get a raise, you should understand how
_______ work.

16. A _____ variable is one that's not defined in
the local scope.

17. We changed the value of doneMessage to
_____ in the closure.

18. An environment that provides values for all
free variables ________ a function.

Down
1. ______ is always right.
2. ____ changed his shirt between pages.
3. Movie the word "derezzed" was used in.
5. An ___________ function is a function

expression that has no name.
7. A function with an ________ attached to it

is called a closure.
8. A function expression evaluates to a function

_________.
10. We passed a function ___________ to set

the cookie alarm.
11. Parameters are _______ variables, so

they're included in the environment where
variables are defined.

15. _________ scope means you can understand
the scope of your variables by reading the
structure of your code.

ACROSS
4. A function declaration nested in another function has
_______ scope.
6. When we tried to call fly before it was defined, we got
this kind of error.
9. wingFlapper is a _________ function.
12. We often use setTimeout to create a timer for making
______.
13. A function expression assigned to a variable at the
top level of your code has ________ scope.
14. To get a raise, you should understand how _______
work.
16. A _____ variable is one that’s not defined in the local
scope.
17. We changed the value of doneMessage to _____ in
the closure.
18. An environment that provides values for all free
variables ________ a function.

DOWN
1. ______ is always right.
2. ____ changed his shirt between pages.
3. Movie the word “derezzed” was used in.
5. An ___________ function is a function
expression that has no name.
7. A function with an ________ attached to it
is called a closure.
8. A function expression evaluates to a function

_________.
10. We passed a function ___________ to set
the cookie alarm.
11. Parameters are _______ variables, so
they’re included in the environment where variables are
defined.
15. _________ scope means you can understand the
scope of your variables by reading the structure of your
code.

512 Chapter 11

exercise solutions

There are a few opportunities in the code below to make the code
more concise by using anonymous functions. Go ahead and rework
the code to use anonymous functions wherever possible. You can
scratch out the old code and write in new code where needed. Oh,
and one more task: circle any anonymous functions that are already
being used in the code. Here’s our solution.

window.onload = init;

var cookies = {

 instructions: "Preheat oven to 350...",

 bake: function(time) {

 console.log("Baking the cookies.");

 setTimeout(done, time);

 }

};

function init() {

 var button = document.getElementById("bake");

 button.onclick = handleButton;

}

function handleButton() {

 console.log("Time to bake the cookies.");

 cookies.bake(2500);

}

function done() {

 alert("Cookies are ready, take them out to cool.");

 console.log("Cooling the cookies.");

 var cool = function() {

 alert("Cookies are cool, time to eat!");

 };

 setTimeout(cool, 1000);

}

you are here 4 513

anonymous functions, scope and closures

window.onload = function() {

 var button = document.getElementById("bake");

 button.onclick = function() {

 console.log("Time to bake the cookies.");

 cookies.bake(2500);

 };

};

var cookies = {

 instructions: "Preheat oven to 350...",

 bake: function(time) {

 console.log("Baking the cookies.");

 setTimeout(done, time);

 }

};

function done() {

 alert("Cookies are ready, take them out to cool.");

 console.log("Cooling the cookies.");

 var cool = function() {

 alert("Cookies are cool, time to eat!");

 };

 setTimeout(cool, 1000);

}

We reworked the code to create two anonymous
function expressions, one for the init function,
and one for the handleButton function.

Now we assign a function expression

to the window.onload property...

...and assign a function
expression to the button.
onclick property.

setTimeout(function() {

 alert("Cookies are cool, time to eat!");

}, 1000);

Extra credit for you if you figured out you can pass the cool function directly to setTimeout, like this:

514 Chapter 11

exercise solutions

Let’s make sure you have the syntax down for passing anonymous function expressions
to other functions. Convert this code from one that uses a variable (in this case vaccine)
as a parameter to one that uses an anonymous function. Here’s our solution.

administer(patient, function(dosage) {
 if (dosage > 0) {
 inject(dosage);
 }
}, time);

Notice that it’s totally fine
to use more than one line for
a function expression that’s
used as an argument. But
watch your syntax; it’s easy
to make a mistake!

makePassword(password) {

 return function guess(passwordGuess) {

 return (passwordGuess === password);

 };

}

var tryGuess = makePassword("secret");

console.log("Guessing 'nope': " + tryGuess("nope"));

console.log("Guessing 'secret': " + tryGuess("secret"));

It’s your turn. Try creating the following closures. We realize this is not an easy task at first,
so refer to the answer if you need to. The important thing is to work your way through these
examples, and get to the point where you fully understand them.

Here are our solutions:

First up for 10pts: makePassword takes a password as an argument and returns a function
that accepts a password guess and returns true if the guess matches the password
(sometimes you need to read these closure descriptions a few times to get them):

The solutions continue on the next page…

Notice here we’re using a named function
expression! We don’t have to, but it’s handy
as a way to refer to the name of the inner
function. But also notice we must invoke the
returned function using tryGuess (not guess).

The function that’s returned
from makePassword is a closure
with an environment containing
the free variable password.

We pass in the value “secret”
to makePassword, so this is
the value that’s stored in
the closure’s environment.

And when we invoke tryGuess, we compare the word we pass in (“nope” or “secret”) with the value for password in the
environment for tryGuess.

you are here 4 515

anonymous functions, scope and closures

It’s your turn. Try creating the following closures. We realize this is not an easy task at first,
so refer to the answer if you need to. The important thing is to work your way through these
examples, and get to the point where you fully understand them.

Here are our solutions (continued):

Next up for 20pts: the multN function takes a number (call it n) and returns a function. That
function itself takes a number, multiplies it by n and returns the result.

function multN(n) {

 return function multBy(m) {

 return n*m;

 };

}

var multBy3 = multN(3);

console.log("Multiplying 2: " + multBy3(2));

console.log("Multiplying 3: " + multBy3(3));

function makeCounter() {

 var count = 0;

 return {

 increment: function() {

 count++;

 return count;

 }

 };

}

var counter = makeCounter();

console.log(counter.increment());

console.log(counter.increment());

console.log(counter.increment());

The function that’s returned from
multN is a closure with an environment
containing the free variable n.

So we invoke multN(3) and get
back a function that multiplies any
number you give it by 3.

This is similar to our previous makeCounter
function, except now we’re returning an
object with an increment method, instead
of returning a function directly.

The increment method has a free variable, count. So, increment is a closure with an environment containing the variable count.

Now, we call makeCounter and get back an
object with a method (that is a closure).

We invoke the method in the usual way, and when we do, the method references the variable count in its environment.

Last up for 30 pts: This is a modification of the counter we just created. makeCounter
takes no arguments, but defines a count variable. It then creates and returns an object
with one method, increment. This method increments the count variable and returns it.

516 Chapter 11

exercise solutions

Use your knowledge of functions and variables
and check off the true statements below. Here’s
our solution:

 ❏ The handler variable holds a function
reference.

 ❏ When we assign handler to window.onload,
we’re assigning it a function reference.

 ❏ The only reason the handler variable exists is
to assign it to window.onload.

 ❏ We’ll never use handler again as it’s code
that is meant to run only when the page first
loads.

 ❏ Invoking onload handlers twice is not a great
idea—doing so could cause issues given
these handlers usually do some initialization
for the entire page.

 ❏ Function expressions create function
references.

 ❏ Did we mention that when we assign
handler to window.onload, we’re assigning it
a function reference?

Here’s your task: (1) find all the free variables in the code below and circle them. A free
variable is one that isn't defined in the local scope. (2) Pick one of the environments on
the right that closes the function. By that we mean that it provides values for all the free
variables. Here’s our solution.

function justSayin(phrase) {
 var ending = "";
 if (beingFunny) {
 ending = " -- I'm just sayin!";
 } else if (notSoMuch) {
 ending = " -- Not so much.";
 }
 alert(phrase + ending);
}

Pick one of these that
closes the function.

Circle the free variables in this
code. Free variables are not
defined in the local scope.

beingFunny = true;

notSoMuch = false;

inConversationWith = "Paul";

beingFunny = true;

justSayin = false;

oocoder = true;

notSoMuch = true;

phrase = "Do do da";

band = "Police";

This environment
closes the two free
variables beingFunny
and notSoMuch

you are here 4 517

anonymous functions, scope and closures

We need a closures expert and we’ve heard that’s you! Now you know how closures work, can you
figure out why both specimens below evaluate to 008? To figure it out, write any variables that are
captured in the environments for the functions below. Note that it’s perfectly fine for an environment
to be empty. Here’s our solution.

EXTREME JAVASCRIPT ChALLENGE

var secret = "007";

function getSecret() {

 var secret = "008";

 function getValue() {

 return secret;

 }

 return getValue();

}

getSecret();

Specimen #1

var secret = "007";

function getSecret() {

 var secret = "008";

 function getValue() {

 return secret;

 }

 return getValue;

}

var getValueFun = getSecret();

getValueFun();

Specimen #2

soluton

Environment

Environment

...so it's captured in the environment for getValue. But we don't return getValue from getSecret, so we never see the closure outside the context in which it was created.

secret = "008"

...and here, we do create a closure that's returned from getSecret. So when we invoke getValueFun (getValue) in a different context (the global scope), we use the value of secret in the environment.

secret is a free

variable in getVa
lue... secret = "008"

secret is a free

variable in getVa
lue...

518 Chapter 11

exercise solutions

Here’s our solution for this brain twister!

(function(food) {

 if (food === "cookies") {

 alert("More please");

 } else if (food === "cake") {

 alert("Yum yum");

 }

 })("cookies");

Your task is to figure out not just what it computes, but how it
computes. To do that, go in reverse, that is, take out the anonymous
function, assign it to a variable, and then replace the previous
function with the variable. Is the code more obvious now? So what
does it do?

var eat = function(food) {

 if (food === "cookies") {

 alert("More please");

 } else if (food === "cake") {

 alert("Yum yum");

 }

};

(eat)("cookies");

Here’s the function, extracted.
We just called it eat. You could
have made this a function
declaration if you preferred.

And what we’re doing is calling eat on “cookies”.
But what are the extra parentheses for?

Here’s the deal. Remember how a function declaration starts
with the word function followed by a name? And remember
how a function expression needs to be inside a statement?
Well, if you don’t use parentheses around the function
expression, the JavaScript interpreter wants this to be a
declaration rather than a function expression. But we don’t
need the parentheses to call eat, so you can remove them.

So all this code did was to inline a
function expression and then immediately
invoke it with some arguments.

Oh, and it returns “More please”.

You would write this as eat(“cookies”) of course, but we’re showing how to substitute eat for the function expression above.

you are here 4 519

anonymous functions, scope and closures

J
1

U J
2

T
3

D O R L
4

O C A
5

L
T
6

Y P E E
7

R R O R
8

N
N N

9
E S T E

10
D O

V F X N L
11

I E P Y O
R R R M C

C
12

O O K I E S E G
13

L O B A L
N N S U L
M C

14
L
15

O S U R E S
E F

16
R E E I

N X O
17

U C H
T I N

C
A

C
18

L O S E S

Across
4. A function declaration nested in another

function has _______ scope. [LOCAL]
6. When we tried to call fly before it was

defined, we got this kind of error.
[TYPEERROR]

9. wingFlapper is a _________ function.
[NESTED]

12. We often use setTimeout to create a timer
for making ______. [COOKIES]

13. A function expression assigned to a variable
at the top level of your code has ________
scope. [GLOBAL]

14. To get a raise, you should understand how
_______ work. [CLOSURES]

16. A _____ variable is one that's not defined in
the local scope. [FREE]

17. We changed the value of doneMessage to
_____ in the closure. [OUCH]

Down
1. ______ is always right. [JUDY]
2. ____ changed his shirt between pages.

[JOE]
3. Movie the word "derezzed" was used in.

[TRON]
5. An ___________ function is a function

expression that has no name.
[ANONYMOUS]

7. A function with an ________ attached to it
is called a closure. [ENVIRONMENT]

8. A function expression evaluates to a function
_________. [REFERENCE]

10. We passed a function ___________ to set
the cookie alarm. [EXPRESSION]

11. Parameters are _______ variables, so
they're included in the environment where
variables are defined. [LOCAL]

JavaScript cross Solution

this is a new chapter 521

Creating objects

12 advanced object construction

So far we’ve been crafting objects by hand. For each object,

we’ve used an object literal to specify each and every property. That’s okay on a

small scale, but for serious code we need something better. That’s where object

constructors come in. With constructors we can create objects much more easily,

and we can create objects that all adhere to the same design blueprint—meaning

we can use constructors to ensure each object has the same properties and

includes the same methods. And with constructors we can write object code that is

much more concise and a lot less error prone when we’re creating lots of objects.

So, let’s get started and after this chapter you’ll be talking constructors just like you

grew up in Objectville.

522 Chapter 12

using object literals

var taxi = {

 make: "Webville Motors",

 model: "Taxi",

 year: 1955,

 color: "yellow",

 passengers: 4,

 convertible: false,

 mileage: 281341,

 started: false,

 start: function() { this.started = true;},

 stop: function() { this.started = false;},

 drive: function {

 // drive code here

 }

};

Creating objects with object literals
So far in this book, you’ve been using object literals to create objects. With an
object literal, you create an object by writing it out… well, literally. Like this:

With an object literal you type
out each part of the object
within curly braces. When you’re
done, the result is an actual
JavaScript object, which you
typically assign to a variable for
later use.

Object literals give you a convenient way to create objects anywhere in your code,
but when you need to create lots of objects—say a whole fleet of taxis—you
wouldn’t want to type in a hundred different object literals now would you?

Think about creating a fleet of taxi objects. What other issues might using object literals cause?

Tired fingers from a lot of typing! The code for the start, stop and drive
methods would have to be duplicated over
and over.Can you ensure that each taxi has the

same properties? What if you make a
mistake or typo, or leave out a property?

What if you decide to add or delete a
property (or to change the way start
or stop work)? You’d have to make the
change in all the taxis.

A lot of object literals means a lot of code.
Isn’t that going to lead to slow download
times for the browser? Who needs taxis when we have Uber?

you are here 4 523

advanced object construction

var taxi = {
 make: "Webville Motors",
 model: "Taxi",
 year: 1955,
 color: "yellow",
 passengers: 4,
 convertible: false,
 mileage: 281341,
 started: false,

 start: function() {
 this.started = true;
 },

 stop: function() {
 this.started = false;
 }

 drive: function {
 // drive code here
 }

};

var tbird = {

 make: "Ford",

 model: "Thunderbird",

 year: 1957,

 passengers: 4,

 convertible: true,

 started: false,

 oilLevel: 1.0,

 start: function() {

 if (oilLevel > .75)
{

 this.started = tr
ue;

 }

 },

 stop: function() {

 this.started = false
;

 },

 drive: function() {

 // drive code here

 }

};

var rocketCar = {
 make: "Galaxy",
 model: "4000",
 year: 2001,
 color: "white",
 passengers: 6,
 convertible: false,
 mileage: 60191919,
 started: false,

 start: function() {
 this.started = true;
 },

 stop: function() {
 this.started = false;
 },

 drive: function() {
 // drive code here
 },

 thrust: function(amount) {
 // code for thrust
 }
};

var toyCar = {
 make: "Mattel", model: "PeeWee", color: "blue", type: "wind up", price: "2.99"};

Using conventions for objects
The other thing we’ve been doing, so far, is creating objects by convention.
For example, we’ve been putting properties and methods together and
saying “it’s a car!” or “it’s a dog!”, but the only thing that makes two
such objects cars (or dogs) is that we’ve followed our own conventions.

Now, this technique might work on a small scale but it’s problematic
when we have lots of objects, or even lots of developers working in the
same code who might not fully know or follow the conventions.

But don’t take our word for it. Take a look at some of the objects we’ve
seen earlier in the book, which we’ve been told are cars:

This definitely looks like the cars
we've been dealing with. It has all the
same properties and methods.

The tbird looks like a great car,
but we’re not seeing some of the
basic properties it needs, like
mileage or color. It also seems to
have a few extra properties. That
could be a problem...

Okay, this looks a lot like our
other car objects...but wait. This
has a rocket thruster. Hmm, not
sure this is really a car.

Wait, this
might be a car
but it looks
nothing like
our other cars.
It does have
a make, model
and color, but
this looks like
a toy, not a
car. What’s this
doing here?

524 Chapter 12

If only I could find a way to
create objects that all share the same

basic structure. That way all my objects would
look the same by having all the right properties and

all my methods would be defined in one place. It
would be something like a cookie cutter that just
stamps out copies of the object for me. That would
be dreamy. But I know it’s just a fantasy...

you are here 4 525

advanced object construction

Introducing Object Constructors
Object constructors, or “constructors” for short, are your path to better
object creation. Think of a constructor like a little factory that can
create an endless number of similar objects.

In terms of code, a constructor is quite similar to a function that
returns an object: you define it once and invoke it every time you
want to create a new object. But as you’ll see there’s a little extra
that goes into a constructor.

The best way to see how constructors work is to create one. Let’s
revisit our old friend, the dog object, from earlier in the book and
write a constructor to create as many dogs as we need. Here’s a
version of the dog object we’ve used before, with a name, a breed
and a weight.

Dog

name
breed

weight

var dog = {

 name: "Fido",

 breed: "Mixed",

 weight: 38

};

But we don’t want just a Fido dog, we want a way to create any dog that has
a name, a breed and a weight. And, again, to do that we’re going to write
some code that looks like a function, with a dash of object syntax thrown in.

With that introduction, you must be a bit curious—go ahead and turn the
page and let’s get these constructors figured out and working for us.

I personally find
constructors quite

Frankensteinian. They’re a
mix of parts from functions
and objects. Could anything

be more wonderful?

Now, if we were going to define such a dog with an object
literal, it would look like this:

Just a simple dog object created
by an object literal. Now we
need to figure out how to
create a lot of these puppies.

Object constructors
and functions are
closely related. Keep
that in mind as
you’re learning how
to write and use
constructors.

You’ll see why on
the next page.

526 Chapter 12

creating a constructor

How to create a Constructor
Using constructors is a two-step process: first we define a constructor, and then
we use it to create objects. Let’s first focus on creating a constructor.

What we want is a constructor that we can use to create dogs, and, more
specifically, dogs with names, breeds and weights. So, we’re going to define a
function, called the constructor, that knows how to create dogs. Like this:

function Dog(name, breed, weight) {

 this.name = name;

 this.breed = breed;

 this.weight = weight;

}

A constructor
function looks
just like a regular
function.

The parameters of the
function match the
properties we want to supply
for each individual dog.

The property names
and parameter names
don’t have to be
the same, but they
often are—again, by
convention.

But notice that we give the name
of the constructor function a capital
letter. This isn’t required; but everyone
does it as a convention.

,,,,,,,`
We need your help. We’ve been using object literals to create ducks. Given what you
learned above, can you write a constructor to create ducks for us? You’ll find one of our
object literals below to base your constructor on:

var duck = {

 type: "redheaded",

 canFly: true

} Write a constructor
for creating ducks.

This part feels more like an object because
we’re assigning each parameter to what
looks like a property.

Hmm, we’re not using local variables like in most
functions. Instead we’re using the this keyword, and
we’ve only used that inside objects so far.

P.S. We know you haven’t fully figured out how this all
works yet, so for now concentrate on the syntax.

Here’s an example
duck object literal.

Hang on; we’ll look at how we use the
constructor next and then all this is going
to fall into place and make more sense.

Notice that
this constructor
function doesn't
return anything.

you are here 4 527

advanced object construction

How to use a Constructor
We said using a constructor is a two-step process: first we create a constructor, then we
use it. Well, we’ve created a Dog constructor, so let’s use it. Here’s how we do that:

var fido = new Dog("Fido", "Mixed", 38);

To create a dog, we use the new
operator with the constructor.

Followed by
a call to the
constructor.

So, to create a new dog object with a name of “Fido”, a breed of “Mixed” and a
weight of 38, we start with the new keyword and follow it by a call to the constructor
function with the appropriate arguments. After this statement is evaluated, the
variable fido will hold a reference to our new dog object.

Now that we have a constructor for dogs, we can keep making them:

var fluffy = new Dog("Fluffy", "Poodle", 30);

var spot = new Dog("Spot", "Chihuahua", 10);

That’s a bit easier than using object literals isn’t it? And by creating dog objects this way,
we know each dog has the same set of properties: name, breed, and weight.

Let’s get some quick hands-on
experience to help this all sink
in. Go ahead and put this code
in a page and give it a test drive.
Write your output here.

function Dog(name, breed, weight) {
 this.name = name;
 this.breed = breed;
 this.weight = weight;
}
var fido = new Dog("Fido", "Mixed", 38);
var fluffy = new Dog("Fluffy", "Poodle", 30);
var spot = new Dog("Spot", "Chihuahua", 10);
var dogs = [fido, fluffy, spot];

for (var i = 0; i < dogs.length; i++) {
 var size = "small";
 if (dogs[i].weight > 10) {
 size = "large";
 }
 console.log("Dog: " + dogs[i].name
 + " is a " + size
 + " " + dogs[i].breed);
}

Try saying it out loud:
“to create fido, I create
a new dog object with
the name Fido that is a
mixed breed and weighs
38 pounds.”

And the
arguments.

528 Chapter 12

how a constructor really works

Behind the
Scenes

How constructors work
We’ve seen how to declare a constructor and also how to use it to create
objects, but we should also take a look behind the scenes to see how a
constructor actually works. Here’s the key: to understand constructors we
need to know what the new operator is doing.

We’ll start with the statement we used to create fido:

1 The first thing new does is create a new, empty object:

var fido = new Dog("Fido", "Mixed", 38);

Take a look at the right-hand side of the assignment, where all the action is.
Let’s follow its execution:

2 Next, new sets this to point to the new object. Remember from
Chapter 5 that this
holds a reference to
the current object
our code is dealing
with.3 With this set up, we now call the function Dog,

passing "Fido", "Mixed" and 38 as arguments.

this

function Dog(name, breed, weight) {

 this.name = name;

 this.breed = breed;

 this.weight = weight;

}

"Fido" "Mixed" 38

this

name: "Fido"

this

name: "Fido"

breed: "Mixed"

this

name: "Fido"

breed: "Mixed"

weight: 38

4 Next the body of the function is invoked.
Like most constructors, Dog assigns values to
properties in the newly created this object.

Executing the body of the Dog
function customizes the new object
with three properties, assigning them
the values of the respective parameters.

you are here 4 529

advanced object construction

Behind the
Scenes

5 Finally, once the Dog function has completed its execution
the new operator returns this, which is a reference to the
newly created object. Notice this is returned for you; you
don’t have to explicitly return it in your code. And after the
new object has been returned, we assign that reference to
the variable fido.

name: "Fido"

breed: "Mixed"

weight: 38fido

Below, you’ll find JavaScript code with some mistakes in it. Your job is to
play like you’re the browser and find the errors in the code. After

you’ve done the exercise look at the end of the chapter to see if you
found them all. And, hey by the way, this is Chapter 12. Feel free to
make style comments too. You’ve earned the right.

BE the Browser

function widget(partNo, size) {

 var this.no = partNo;

 var this.breed = size;

}

function FormFactor(material, widget) {

 this.material = material,

 this.widget = widget,

 return this;

}

var widgetA = widget(100, "large");

var widgetB = new widget(101, "small");

var formFactorA = newFormFactor("plastic", widgetA);

var formFactorB = new ForumFactor("metal", widgetB);

530 Chapter 12

adding methods to a constructor

You can put methods into constructors as well
The dog objects that the Dog constructor creates are just like the dogs from earlier in the book…
except that our newly constructed dogs can’t bark (because they don’t have a bark method).
This is easily fixed because in addition to assigning values to properties in the constructor, we
can set up methods too. Let’s extend the code to include a bark method:

 function Dog(name, breed, weight) {

 this.name = name;

 this.breed = breed;

 this.weight = weight;

 this.bark = function() {

 if (this.weight > 25) {

 alert(this.name + " says Woof!");

 } else {

 alert(this.name + " says Yip!");

 }

 };

}

To add a bark method we simply
assign a function, in this case
an anonymous function, to the
property this.bark.

Now every dog object will
also have a bark method
that you can invoke.

Notice that, just like all the other objects we’ve
created in the past, we use this to refer to the
object we’re calling the method on.

var fido = new Dog("Fido", "Mixed", 38);

var fluffy = new Dog("Fluffy", "Poodle", 30);

var spot = new Dog("Spot", "Chihuahua", 10);

var dogs = [fido, fluffy, spot];

for (var i = 0; i < dogs.length; i++) {

 dogs[i].bark();

}

Take the bark method for a quick test drive

Enough talking about constructors, let’s add the code above
to an HTML page, and then add the code below to test it:

Make sure your dog objects
bark like they’re supposed to.

By the way, as
you know, methods
in objects are
properties too.
They just happen
to have a function
assigned to them.

you are here 4 531

advanced object construction

We’ve got a constructor to create coffee drinks, but it’s missing its
methods.

We need a method, getSize, that returns a string depending on the
number of ounces of coffee:

 � 8oz is a small

 � 12oz is a medium

 � 16oz is a large

We also need a method, toString, that returns a string that represents your order,
like “You’ve ordered a small House Blend coffee.”

Write your code below, and then test it in the browser. Try creating a few different
sizes of coffee. Check your answer before you go on.

function Coffee(roast, ounces) {

 this.roast = roast;

 this.ounces = ounces;

}

var houseBlend = new Coffee("House Blend", 12);

console.log(houseBlend.toString());

var darkRoast = new Coffee("Dark Roast", 16);

console.log(darkRoast.toString());

Write the two methods for
this constructor here.

JavaScript console

You've ordered a medium House
Blend coffee.
You've ordered a large Dark
Roast coffee.

Here's our output; yours
should look similar.

532 Chapter 12

questions about constructors

 Q: Why do constructor
names start with a capital letter?

A: This is a convention that
JavaScript developers use so
they can easily identify which
functions are constructors, and
which functions are just regular
old functions. Why? Because with
constructor functions, you need to
use the new operator. In general,
using a capital letter for constructors
makes them easier to pick out when
you’re reading code.

Q: So, other than setting up
the properties of the this object,
a constructor’s just like a regular
function?

A: If you mean computationally,
yes. You can do anything in a
constructor you can do in a regular
function, like declare and use
variables, use for loops, call other
functions, and so on. The only thing
you don’t want to do is return a value
(other than this) from a constructor
because that will cause the
constructor to not return the object
it’s supposed to be constructing.

Q: Do the parameter names
of a constructor function have to
match the property names?

A: No. You can use whatever
names you want for the parameters.
The parameters are just used to hold
values that we want to assign to the
object’s properties to customize the
object. What matters is the name of
the properties you use for the object.
That said, we often do use the same
names for clarity, so we know which
properties we’re assigning by looking
at the constructor function definition.

Q: Is an object created by a
constructor just like an object
created with a literal?

A: Yes, until you get into more
advanced object design, which we’ll
do in the next chapter.

Q: Why do we need new to
create objects? Couldn’t we create
an object in a regular function and
return it (kind of like we did with
makeCar in chapter 5)?

A: Yes, you could create objects
that way, but like we said in the
previous answer, there are some
extra things that happen when you
use new. We’ll get more into these
issues later in this chapter, and
again in Chapter 13.

Q: I’m still a bit confused by
this in the constructor. We’re
using this to assign properties
to the object, and we’re also using
this in the methods of the object.
Are these the same thing?

A: When you call a constructor
(to create an object) the value of
this is set to the new object that’s
being created so all the code that is
evaluated in the constructor applies
to that new object.

Later, when you call a method on
an object, this is set to the object
whose method you called. So the
this in your methods will always
refer to the object whose method
was called.

Q: Is it better to create objects
with a constructor than with
object literals?

A: Both are useful. A constructor
is useful when you want to create
lots of objects with the same
property names and methods. Using
them is convenient, reuses code,
and provides consistency across
your objects.

But sometimes we just need a quick
object, perhaps a one-time-use only
object, and literals are concise and
expressive to use for this.

So it really depends what your needs
are. Both are great ways to create
an object.

We’ll see
a good
example of
this a bit
later.

you are here 4 533

advanced object construction

DANGER ZONE
There’s one aspect of constructors you need to be very careful about: don’t forget to use the new
keyword. It’s easy to do because a constructor is, after all, a function, and you can call it without
new. But if you forget new on a constructor it can lead to buggy code that is hard to troubleshoot.
Let’s take a look at what can happen when you forget the new keyword...

function Album(title, artist, year) {

 this.title = title;

 this.artist = artist;

 this.year = year;

 this.play = function() {

 // code here

 };

}

var darkside = Album("Dark Side of the Cheese","Pink Mouse", 1971);

darkside.play();

Uncaught TypeError: Cannot call method 'play' of undefined

 ❏ Remember that new first creates a new object before assigning it to this (and
then calling your constructor function). If you don’t use new, a new object will
never be created.

 ❏ That means any references to this in your constructor won’t refer to a new album
object, but rather, will refer to the global object of your application.

 ❏ If you don’t use new there’s no object to return from the constructor, which
means there is no object assigned to the darkside variable, so darkside is
undefined. That’s why when we try to call the play method, we get an error
saying the object we’re trying to call it on is undefined.

SAFETY CHECKLIST

This looks like a well-
constructed constructor.

Oops we forgot to use new!
But maybe that’s okay
because Album is a function.

Let’s try to call the play method
anyway. Oh, this isn’t good...

Okay, let’s read the checklist to see why this might have happened: The global object is
the top-level object,
which is where global
variables get stored.
In browsers, this
object is the window
object.

534 Chapter 12

If you’re using a constructor to
create objects and those objects
keep coming up undefined when you
reference them, double check your

code and make sure you’re using a new
operator with your constructor.

And if you’re holding an open test
tube with liquid in it, tilted, above
an expensive laptop, you should
probably double-check that too!

you are here 4 535

advanced object construction

Head First: new, where have you been hiding? How did
we get to Chapter 12 before seeing you?

new: There are still a lot of scripts out there that don’t
use me, or use me without understanding me.

Head First: Why is that?

new: Because many scripters just use object literals or
copy & paste code that uses me, without understanding
how I work.

Head First: That’s a good point… object literals are
convenient, and I myself am not quite clear on when or
how to use you just yet.

new: Well it’s true, I am kind of an advanced feature.
After all, to know how to use me, you first have to know
how objects work, and how functions work, and how this
works... it’s a lot to wrap your head around before you
even learn about me at all!

Head First: Can you give us the elevator pitch about
yourself ? Now that our readers know about objects,
functions, and this, it would be great for them to get
motivated for learning about you.

new: Let me think for a second… Okay here you go:
I’m the operator that operates on constructor functions to
create new objects.

Head First: Umm, I hate to break it to you but that isn’t
the best elevator pitch.

new: Gimme a break, I’m an operator, not a PR lackey.

Head First: Well, you do raise several questions with
that pitch. First of all, you’re an operator?

new: Yup! I’m an operator. Put me in front of a function
call and I change everything. An operator operates on its
operands. In my case, I have only one operand and that
operand is a function call.

Head First: Right, so explain exactly how you operate.

new: Well, first, I make a new object. Everyone thinks
that the constructor function is what does it, but it’s
actually me. It’s a thankless job.

Head First: Go on…

new: Okay, so then I call the constructor function and
make sure that the new object I’ve created is referenced by
the this keyword in the body of the function.

Head First: Why do you do that?

new: So that the statements in the body of the function
have a way to refer to the object. After all, the whole
point of a constructor function is to extend that object
using new properties and methods. If you’re using the
constructor to create objects like dogs and cars, you’re
going to want those objects to have some properties, right?

Head First: Right. And then?

new: Then I make sure that the new object that was
created is returned from the constructor. It’s a nice
convenience so that developers don’t have to remember to
return it themselves.

Head First: It does sound very convenient. Now why
would anyone use an object literal after learning you?

new: Oh, object literal and I go way back. He’s a great
guy, and I’d use him in a second if I had to create a quick
object. But, you want me when you’ve got to create a
lot of similar objects, when you want to make sure your
objects are taking advantage of code reuse, when you
want to ensure some consistency, and after you’ve learned
a little more, to support some even more advanced uses.

Head First: More advanced? Oh do tell!

new: Now now, let’s keep these readers focused. We’ll talk
more in the next chapter.

Head First: I think I need to re-read this interview first!
Until then…

The Constructor Exposed
This week’s interview:
Getting to know new

536 Chapter 12

creating a car constructor

It’s Production Time!
You’ve learned your object
construction skills just in time
because we’ve just received a
big order for cars and we can’t be
creating them all by hand. We need
to use a constructor so we can get the job
done on time. We’re going to do that by taking the
car object literals we’ve used so far in the book, and using
them as a guide for creating a constructor to make cars.

Check out the various kinds of cars we need to build below. Notice
we’ve already taken the liberty of making their properties and methods uniform,
so they all match across each car. For now, we won’t worry about special options, or toy cars and rocket
cars (we’ll come back to that later). Go ahead and take a look, and then let’s build a constructor that can
create car objects for any kind of car that has these property names and methods:

var chevy = {
 make: "Chevy",
 model: "Bel Air",
 year: 1957,
 color: "red",
 passengers: 2,
 convertible: false,
 mileage: 1021,
 started: false,

 start: function() {
 this.started = true;

 },

 stop: function() {

 this.started = false;

 },

 drive: function() {

 if (this.started) {

 console.log(this.make + " " +

 this.model + " goes zoom zoom!");

 } else {
 console.log("Start the engine first.");

 }
 }
};

var cadi = {
 make: "GM",
 model: "Cadillac",
 year: 1955,
 color: "tan",
 passengers: 5,
 convertible: false,
 mileage: 12892,
 started: false,
 start: function() {...},
 stop: function() {...},
 drive: function() {...}
};

var fiat = { make: "Fiat", model: "500", year: 1957, color: "Medium Blue", passengers: 2, convertible: false, mileage: 88000, started: false, start: function() {...}, stop: function() {...}, drive: function() {...}};

var taxi = {
 make: "Webville Motors",
 model: "Taxi",
 year: 1955,
 color: "yellow",
 passengers: 4,
 convertible: false,
 mileage: 281341,
 started: false,
 start: function() {...},
 stop: function() {...},
 drive: function() {...}
};

you are here 4 537

advanced object construction

Use everything you’ve learned to create a Car constructor. We suggest the following order:

function ________(__) {

}

All your work
goes here.

1

2

3

Start by providing the function keyword (actually we did that for you) followed by the
constructor name. Next supply the parameters; you’ll need one for each property that
you want to supply an initial value for.

Next, assign each property in the object its initial value (make sure you use this
along with the property name).

Finally, add in the three car methods: start, drive and stop.

Make sure you check all your work with the answer at
the end of the chapter before proceeding!

538 Chapter 12

testing the car constructor

Let’s test drive some new cars
Now that we have a way to mass-produce car objects, let’s make
some, and put them through their paces. Start by putting the
Car constructor in an HTML page, then add some test code.

Here’s the code we used; feel free to alter and extend it:

var chevy = new Car("Chevy", "Bel Air", 1957, "red", 2, false, 1021);

var cadi = new Car("GM", "Cadillac", 1955, "tan", 5, false, 12892);

var taxi = new Car("Webville Motors", "Taxi", 1955, "yellow", 4, false, 281341);

var fiat = new Car("Fiat", "500", 1957, "Medium Blue", 2, false, 88000);

First we're using the constructor to
create all the cars from Chapter 5.

var testCar = new Car("Webville Motors", "Test Car", 2014, "marine", 2, true, 21);

But why stop there?

Let's create the book's test drive car!

Are you starting to see how easy creating new objects can be
with constructors? Now let’s take these cars for a test drive:

var cars = [chevy, cadi, taxi, fiat, testCar];

for(var i = 0; i < cars.length; i++) {

 cars[i].start();

 cars[i].drive();

 cars[i].drive();

 cars[i].stop();

}

JavaScript console
Chevy Bel Air goes zoom zoom!
Chevy Bel Air goes zoom zoom!
GM Cadillac goes zoom zoom!
GM Cadillac goes zoom zoom!
Webville Motors Taxi goes zoom zoom!
Webville Motors Taxi goes zoom zoom!
Fiat 500 goes zoom zoom!
Fiat 500 goes zoom zoom!
Webville Motors Test Car goes zoom zoom!
Webville Motors Test Car goes zoom zoom!

Here's the output we got. Did you add your
own car to the mix? Try changing what the
cars do (like driving before the car is started

).
Or, maybe you can make the number of times
we call the drive method random?

Note: you won’t be able to
do this unless you did the
exercise on the previous page!

Feel free to add your own
favorite or fictional car too.

you are here 4 539

advanced object construction

Don’t count out object literals just yet
We’ve had some discussion of object constructors versus object literals, and
mentioned that object literals are still quite useful, but you really haven’t
seen a good example of that. Well, let’s do a little reworking of the Car
constructor code, so you can see where using some object literals actually
cleans up the code and makes it more readable and maintainable.

Let’s look at the Car constructor again and see how we might be able to
clean it up a bit.

function Car(make, model, year, color, passengers, convertible, mileage) {
 this.make = make;
 this.model = model;
 this.year = year;
 this.color = color;
 this.passengers = passengers;
 this.convertible = convertible;
 this.mileage = mileage;
 this.started = false;

 this.start = function() {
 this.started = true;
 };
 //rest of the methods here
}

Notice we're using a lot of
parameters here. We count seven.

And when we write code that calls this
constructor we have to make sure we get the
arguments all in exactly the right order.

The more we add (and we always end up adding more as the requirements for objects grow), the harder this is to read.

So the problem we’re highlighting here is that we have a heck of a lot of
parameters in the Car constructor, making it difficult to read and maintain. It’s
also difficult to write code to call this constructor. While that might seem like a
minor inconvenience, it actually causes more bugs than you might think, and
not only that, they’re often nasty bugs that are hard to diagnose at first.

However, there is a common technique that we can use when passing all these
arguments that can be used for any function, whether or not it’s a constructor.
The technique works like this: take all your arguments, throw them in an object
literal, and then pass that literal to your function—that way you’re passing all
your values in one container (the literal object) and you don’t have worry about
matching the order of your arguments and parameters.

Let’s rewrite the code to call the Car constructor, and then do a slight rework of
the constructor code to see how this works.

They're hard to diagnose because
if you switch two variables, the
code is still syntactically correct,
but it doesn't function correctly
because you've switched two values.

Or if you leave out a value, all kinds of craziness can ensue!

540 Chapter 12

using an object literal for arguments

Rewiring the arguments
as an object literal
Let’s take the call to the Car constructor and rework its arguments
into an object literal:

var cadi = new Car("GM", "Cadillac", 1955, "tan", 5, false, 12892);

var cadiParams = {make: "GM",

 model: "Cadillac",

 year: 1955,

 color: "tan",

 passengers: 5,

 convertible: false,

 mileage: 12892};

All you need to do is take each argument and place it in
an object literal with an appropriate property name. We
use the same property names used in the constructor.

And then we can rewrite the call to the Car constructor like this:

var cadi = new Car(cadiParams);

var cadiParams = {make: "GM",

 model: "Cadillac",

 year: 1955,

 color: "tan",

 passengers: 5,

 convertible: false,

 mileage: 12892};

Wow, talk about a makeover.
Not only is this much cleaner,
it's a lot more readable, at
least in our humble opinion.

But we’re not done yet because the constructor itself is still
expecting seven arguments, not one object. Let’s rework the
constructor code, and then we’ll give this a test.

We’ve kept the same
order, but there is no
reason you’d have to.

Now we’re passing a single argument to the Car constructor.

you are here 4 541

advanced object construction

var cadiParams = {make: "GM",

 model: "Cadillac",

 year: 1955,

 color: "tan",

 passengers: 5,

 convertible: false,

 mileage: 12892};

var cadi = new Car(cadiParams);

function Car(params) {

 this.make = params.make;
 this.model = params.model;
 this.year = params.year;
 this.color = params.color;
 this.passengers = params.passengers;
 this.convertible = params.convertible;
 this.mileage = params.mileage;
 this.started = false;

 this.start = function() {
 this.started = true;
 };
 this.stop = function() {
 this.started = false;
 };
 this.drive = function() {
 if (this.started) {
 alert("Zoom zoom!");
 } else {
 alert("You need to start the engine first.");
 }
 };
}

Reworking the Car constructor
Now you need to remove all the individual parameters in the Car
constructor and replace them with properties from the object that
we’re passing in. We’ll call that parameter params. You also need to
rework the code a bit to use this object. Here’s how:

Then for each reference to a
parameter, we substitute the
corresponding property from the
object passed into the functio

n.

In our methods we never use a parameter directly. It
wouldn't make sense to because we always want to use
the object's properties (which we do using the this
variable). So, no changes are needed to this code at all.

First things first. We’ll replace the seven
parameters of the Car constructor with one
parameter, for the object we’re passing in.

No changes here, we've just
reproduced the object literal and
the call to the Car constructor
from the previous page.

Test drive

Update the cadi and all
your other cars, and test
your code.

cadi.start();

cadi.drive();

cadi.drive();

cadi.stop();

542 Chapter 12

questions about type

Copy the Car and Dog constructors into one file, and then add the code
below along with it. Give this a run and capture the output.

var limoParams = {make: "Webville Motors",
 model: "limo",
 year: 1983,
 color: "black",
 passengers: 12,
 convertible: true,
 mileage: 21120};

var limo = new Car(limoParams);
var limoDog = new Dog("Rhapsody In Blue", "Poodle", 40);

console.log(limo.make + " " + limo.model + " is a " + typeof limo);
console.log(limoDog.name + " is a " + typeof limoDog);

Put the output here.

Q: Remind me what typeof does again?

A: The typeof operator returns the type of its operand. If you pass
it a string you’ll get back “string”, if you pass it an object you’ll get
back “object” and so on. You can pass it any type: a number, a string,
a boolean, or a more complex type like an object or function. But
typeof can’t be more specific and tell you the object is a dog or a car.

Q: So if typeof can’t tell me that my object is a dog or car,
how do I determine what is what?

A: Many other object-oriented languages, like Java or C++,
have a strong notion of object typing. In those languages you can
examine an object and determine exactly what type of object it
is. But, JavaScript treats objects and their types in a looser, more
dynamic way. Because of this, many developers have jumped to the
conclusion that JavaScript has a less powerful object system, but
the truth is, its object system is actually more general and flexible.
Because JavaScript’s type system is more dynamic, it’s a little more
difficult to determine if an object is a dog or a car, and it depends
on what you think a dog is or a car is. However, we have another
operator that can give us a little more information... so continue
reading.

Say someone handed you an object and you wanted to know
what type of object it was (is it a Car? a Dog? Superman?), or you
wanted to see if it was the same type as another object. Would the
typeof operator be helpful?

You’ll find the Dog constructor
on page 530.

you are here 4 543

advanced object construction

Understanding Object Instances
You can’t look at a JavaScript object and determine that it is an object of a specific type, like
a dog or a car. In JavaScript, objects are dynamic structures, and the type of all objects is just

“object,” no matter what properties and methods it has. But we can get some information about
an object if we know the constructor that created the object.

Remember that each time you call a constructor using the new operator, you are creating a
new instance of an object. And, if you used, say, the Car constructor to do that, then we say,
informally, that the object is a car. More formally, we say that object is an instance of a Car.

Instance 1 Instance 2 Instance 3

Now saying an object is an instance of some constructor is more than just talk. We can
actually write code to inspect the constructor that made an object with the instanceof
operator. Let’s look at some code:

You can think of these cars as
being the same kind of object
because they all were created by
the same constructor.

As you know, each instance can have its own unique set of
property values, but we think of all the objects created
from the Car constructor as instances of Car.

var cadiParams = {make: "GM", model: "Cadillac", year: 1955, color: "tan",
 passengers: 5, convertible: false, mileage: 12892};

var cadi = new Car(cadiParams);

if (cadi instanceof Car) {
 console.log("Congrats, it's a Car!");
};

It’s a bit more complicated than we’re describing here,
but we’ll talk about that in the next chapter.

As it turns out, one of the things the new operator does behind the scenes when the object
is created is to store information that allows it to determine, at any time, the constructor
that created the object. And instanceof uses that to determine if an object is an
instance of a certain constructor.

The instanceof operator returns true if the object
was created by the specified constructor.

In this case we're saying “Is the cadi object an instance that was created by the Car constructor?”

JavaScript console
Congrats, it's a Car!

544 Chapter 12

exercise for instanceof

We need a function named dogCatcher that returns true if the object passed to it is a dog,
and false otherwise. Write that function and test it with the rest of the code below. Don’t
forget to check your answer at the end of the chapter before you go on!

function dogCatcher(obj) {

}

Add your code here
to implement the
dogCatcher function.

And here's your test code.
function Cat(name, breed, weight) {
 this.name = name;
 this.breed = breed;
 this.weight = weight;
}
var meow = new Cat("Meow", "Siamese", 10);
var whiskers = new Cat("Whiskers", "Mixed", 12);

var fido = {name: "Fido", breed: "Mixed", weight: 38};

function Dog(name, breed, weight) {
 this.name = name;
 this.breed = breed;
 this.weight = weight;
 this.bark = function() {
 if (this.weight > 25) {
 alert(this.name + " says Woof!");
 } else {
 alert(this.name + " says Yip!");
 }
 };
}
var fluffy = new Dog("Fluffy", "Poodle", 30);
var spot = new Dog("Spot", "Chihuahua", 10);
var dogs = [meow, whiskers, fido, fluffy, spot];

for (var i = 0; i < dogs.length; i++) {
 if (dogCatcher(dogs[i])) {
 console.log(dogs[i].name + " is a dog!");
 }
}

you are here 4 545

advanced object construction

So an object is a dog if it was
created with a Dog constructor,
and not otherwise?

Yes, that’s how it works. JavaScript doesn’t
have a strong sense of an object’s type, so if you need to
compare objects to see if they are both cats or both dogs,
you check to see if they were constructed the same way—
that is, with the same constructor function. As we’ve said,
a cat is a cat if it was created by the Cat constructor, and a
dog is a dog if it was created by the Dog constructor.

Now in the next chapter you’re going to see JavaScript
constructors and objects are even more flexible than we’ve
already seen. For instance, we might have an object that
was created with a Taxi constructor, and yet we know that
it is also a car. But for now, just stash that idea in the back
of your brain and we’ll come back to it later.

546 Chapter 12

changing an object created with a constructor

Even constructed objects can have their
own independent properties
We’ve talked a lot about how to use constructors to create consistent objects—
objects that have the same set of properties and the same methods. But what we
haven’t mentioned is that using constructors still doesn’t prevent us from changing
an object into something else later, because after an object has been created by a
constructor, it can be altered.

What exactly are we talking about? Remember when we introduced object
literals? We looked at how we could add and delete properties after the object was
created. You can do the same with objects created from constructors:

var fido = new Dog("Fido", "Mixed", 38);

fido.owner = "Bob";

delete fido.weight;

We can add a new property just by
assigning it a value in our object.

Here's our dog Fido, created
with the Dog constructor.

Or we can get rid of a property by
using the delete operator.

You can even add new methods if you like:

fido.trust = function(person) {

 return (person === "Bob");

 };

To add a method just assign the method
to a new property name in the object.

Anonymous function alert!
See, they're everywhere!

Notice that here we’re changing only the fido object. If we add a method
to fido, only fido has that method. No other dogs have it:

This code works because trust is defined in
the fido object. So notBite is true.var notBite = fido.trust("Bob");

var spot = new Dog("Spot", "Chihuahua", 10);

notBite = spot.trust("Bob");
This code doesn't work because spot doesn't have
a method trust, resulting in: “TypeError: Object
#<Dog> has no method ‘trust’"

you are here 4 547

advanced object construction

So if I change a car
object after I create it,
is it still a car?

Yes, a car is still a car, even if you change it later.
And what we mean by that is if you check to see if your object is still
an instance of Car, it will be. For instance, if we create a car object:

var cadiParams = {make: "GM", model: "Cadillac",
 year: 1955, color: "tan",
 passengers: 5, convertible: false,
 mileage: 12892};
var cadi = new Car(cadiParams);

We can add a new property chrome and delete the property
convertible:

 cadi.chrome = true;
 delete cadi.convertible;

 and yet, the cadi is still a car:

 cadi instanceof Car

Now is it really a car in practical terms? What if we deleted every
property in the object? Would it still be a car? The instanceof
operator would tell us yes. But judging by our own terms, probably not.

Chances are, you won’t often want to use a constructor to create an
object and then later change it into something that’s unrecognizable
as an object created by that constructor. In general, you’ll use
constructors to create objects that are fairly consistent. But if you need
objects that are more flexible, well, JavaScript can handle that. It’s your
job as a code designer to decide how to use constructors and objects in
a way that makes sense for you (and don’t forget your coworkers).

Evaluates to true.

This is what we
meant earlier
when we said that
JavaScript has
a dynamic type
system.

548 Chapter 12

the date object

Real World Constructors

JavaScript comes with a set of constructors for instantiating some handy
objects—like objects that know how to deal with dates and times, objects
that are great at finding patterns in text, and even objects that will give you
a new perspective on arrays. Now that you know how constructors work,
and also how to use the new keyword, you’re in a great position to make use
of these constructors, or more importantly the objects they create. Let’s just
take a quick dip into a couple, and then you’ll be all ready to go out and
explore them on your own.

Let’s start with JavaScript’s built-in date object. To get one we just use its
constructor:

Calling the Date constructor gives you back an instance of Date that
represents the current local date and time. With a date object in hand, you
can then use its methods to manipulate dates (and times) and also retrieve
various properties of a date and time. Here are a few examples:

You can easily create date objects representing any date and time by passing
additional arguments to the Date constructor. For instance, say you need a
date object representing “May 1, 1983”, you can do that with:

And you can get even more specific by including a time:

We are, of course, just giving you a flyby of the date object; you’ll want to
check out its full set of properties and methods in JavaScript: The Definitive
Guide.

You can pass a simple date string
to the constructor like this.

Returns a string that represents
the date, like “Thu Feb 06 2014
17:29:29 GMT-0800 (PST)”.

Returns the year in the date.

var now = new Date();

var dateString = now.toString();

var theYear = now.getFullYear();

var theDayOfWeek = now.getDay();

Creates a new date representing
the current date and time.

Returns a number for the day of the week represented by the date object, like 1 (for Monday).

var birthday = new Date("May 1, 1983");

var birthday = new Date("May 1, 1983 08:03 pm"); Now, we’re including a
time in the string too.

These built-in objects
really save me time. Heck, these

days I get home early enough to
watch a little “Golden Girls.”

you are here 4 549

advanced object construction

The Array object
Next up, another interesting built-in object: the array object. While we’ve been
creating arrays using the square bracket notation [1, 2, 3], you can create arrays using
a constructor too:

Here, we’re creating a new, empty array object. And at any time we can add items to
it, like this:

We can also create array objects that have a specific size. Say we want an array with
three items:

Here we’ve created an array of length three. Initially the three items in oddNumbers
are undefined, but we then set each item in the array to a value. You could easily add
more items to the array if you wanted.

None of this should be shockingly different than what you’re used to. Where the array
object gets interesting is in its set of methods. You already know about array’s sort
method, and here are a few other interesting ones:

Again, that’s just the tip of the iceberg, so take a look at JavaScript: The Definitive Guide
to fully explore the array object. You’ve got all the knowledge you need to take it on.

Creates an empty array
with length zero.

This should look familiar. This is the same
way we’ve always added items to an array.

var emptyArray = new Array();

var oddNumbers = new Array(3);

oddNumbers[0] = 1;

oddNumbers[1] = 3;

oddNumbers[2] = 5;

emptyArray[0] = 99;

oddNumbers.reverse();

var aString = oddNumbers.join(" - ");

var areAllOdd = oddNumbers.every(function(x) {

 return ((x % 2) !== 0);

});

We create an array of length three, and fill it in with values after we create it.

This reverses all the values in the array (so we have 5, 3, 1 in

oddNumbers now). Notice, the method changes the original array.

The join method creates a string from the values in
oddNumbers placing a “ - ” between the values, and returns
that string. So this returns the string “5 - 3 - 1”.

The every method takes a function and tests each value of the array to see if the function returns true or false when called on that value. If the function returns true for all the array items, then the result of the every method is true.

550 Chapter 12

two ways to create arrays

Good catch. The bracket notation, [], that you’ve been using to create
arrays is actually just a shorthand for using the Array constructor directly.
Check out these two equivalent ways of creating empty arrays:

Back up the bus. Up until
now we’ve been creating arrays

in a totally different way.

var items = [];

var items = new Array();

var n = getNumberOfWidgetsFromDatabase();

var widgets = new Array(n);

for(var i=0; i < n; i++) {

 widgets[i] = getDatabaseRecord(i);

}

These do the same thing. The
bracket notation is supported in the
JavaScript language to make your life
easier when creating arrays.

Likewise, if you write code like this:

var items = ["a", "b", "c"];

That’s just a shorthand for using the constructor in another way:

var items = new Array("a", "b", "c");

If you pass more than one argument, this
creates an array holding the values you pass it.

And, the objects created from the literal notation or by using the constructor
directly are the same, so you can use methods on either one.

You might be asking why you’d ever use the constructor rather than the
literal notation. The constructor comes in handy when you need to create
an array of a specific size you determine at runtime, and then add items to it
later, like this:

We call this array literal
syntax.

This code presumably
uses big arrays that we
won't know the size of
until runtime.

So, for creating a quick array, using the array literal syntax to create your
array objects works wonderfully, but using the Array constructor might make
sense when you’re creating the array programmatically. You can use either or
both as much as you want.

you are here 4 551

advanced object construction

Q: I’m confused by how the Date and
Array constructors work: they seem to
support zero or more arguments. Like
with Date, if I don’t provide an argument,
then I get today’s date, but I can also
pass arguments to get other dates. How
does that work?

A: Right, good catch. It’s possible to
write functions that do different things based
on the number of arguments. So if the
Array constructor has zero arguments, the
constructor knows it is creating an empty
array; if it has one argument that’s a number,
it knows that’s the size of the array, and if
it has more, then those arguments are all
initial values.

 Q: Can we do that with our
constructors?

A: Of course. This is something we
haven’t covered, but every function gets
passed an arguments object that contains all
the arguments passed to the function. You
can use this to determine what was passed

and act appropriately (check the appendix
for more on the arguments object). There are
other techniques based on checking to see
which of your parameters is set to undefined.

Q: We used Math earlier in the book.
Why don’t I have to say "new Math" to
instantiate a math object before I use it?

A: Great question. Actually, Math is not a
constructor, or even a function. It’s an object.
As you know, Math is a built-in object that
you can use to do things like get the value
of pi (with Math.PI) or generate a random
number (with Math.random). Think of
Math as just like an object literal that has a
bunch of useful properties and methods in
it, built-in for you to use whenever you write
JavaScript code. It just happens to have a
capital first letter to let you know that it’s
built-in to JavaScript.

Q: I know how to check if an object
is an instance of a constructor name,
but how do I write the code to ask if two
objects have the same constructor?

A: You can check to see if two objects
have the same constructor like this:

((fido instanceof Dog) &&
 (spot instanceof Dog))

If this expression results in true, then fido
and spot were indeed created by the same
constructor.

Q: If I create an object with an object
literal, what is it an instance of? Or is it
not an instance of anything?

A: An object literal is an instance of
Object. Think of Object as the constructor for
the most generic kind of object in JavaScript.
You’ll learn much more about how Object
figures into JavaScript’s object system in the
next chapter.

Even more fun with built-in objects
Date and array aren’t the only built-in objects in JavaScript. There are lots of other objects that
come with the language you might find handy at times. Here’s a short list (there are more, so
search online for “JavaScript’s standard built-in objects” if you’re curious!).

Object By using the Object constructor you can

create objects. Like arrays, the object

literal notation { } is equivalent to using

new Object(). More on this later.

Math This object has properties and
methods for doing math stuff. Like
Math.PI and Math.random().

RegExp Use this constructor to create
regular expression objects, which
allow you to search for patterns,
even complex ones, in text.

Error This constructor creates standard

error objects that are handy when

catching errors in your code.

552 Chapter 12

exercise for making objects

Webville Motors is revolutionizing car production by creating all
their cars from a prototype car. The prototype gives you all the
basics you need: a way to start, drive and stop it along with a
couple properties like the make and year it was manufactured—
but the rest is up to you. Want it to be red or blue? No problem,
just customize it. Need for it to have a fancy stereo? No problem,
go crazy, add it.

So this is your opportunity to design your perfect car. Create a
CarPrototype object below, and make the car of your dreams.
Check out our design at the end of the chapter before moving on.

function CarProtoype() { this.make = "Webville Motors"; this.year = 2013;
 this.start = function() {...}; this.stop = function() {...}; this.drive = function() {...};}

Draw your car here.

And customize
the prototype
here.

Oh, and where are we going with
this? You’ll find out in the next
chapter! By the way, you’re
done with this chapter... Oh, but
there’s still the bullet points and
the crossword puzzle to do!

you are here 4 553

advanced object construction

 � An object literal works well when
you need to create a small number
of objects.

 � A constructor works well when you
need to create many similar objects.

 � Constructors are functions that are
meant to be used with the new
operator. We capitalize the names of
constructors by convention.

 � Using a constructor we can create
objects that are consistent, having
the same property names and
methods.

 � Use the new operator with a
constructor function call to create an
object.

 � When you use new with a
constructor function call, it creates a
new, empty object, which is assigned
to this within the body of the
constructor.

 � Use this in a constructor function to
access the object being constructed
and add properties to the object.

 � A new object is returned
automatically by the constructor
function.

 � If you forget to use new with a
constructor, no object is created. This
will cause errors in your code that
can be difficult to debug.

 � To customize objects, we pass
arguments to a constructor, and
use those values to initialize the
properties of the object being
created.

 � If a constructor has a lot of
parameters, consider consolidating
them into one object parameter.

 � To know if an object was created
by a specific constructor, use the
instanceof operator.

 � You can modify an object that was
created by a constructor just like you
can modify an object literal.

 � JavaScript comes with a number of
constructors you can use to create
useful objects like date objects,
regular expressions and arrays.

554 Chapter 12

javascript crossword

JavaScript cross
Construct some new connections in your brain with
this crossword puzzle.

1

2 3

4

5 6

7 8

9

10

11

12 13

14

15

Across
2. A constructor is a ____________.
7. If you want to save my birthday in a variable,

you'll need a ______ constructor.
9. You can use an object literal to pass

arguments to a constructor when the
constructor has lots of these.

10. When you create an object from a
constructor, we say it is an __________ of
the constructor.

11. A constructor is a bit like a _______ cutter.
14. The constructor function returns the newly

constructed __________.
15. If you forget to use new with a constructor,

you might see a ___________.

Down
1. Constructor syntax is a bit

______________.
3. You can add a property to an object created

by a ________ whenever you want.
4. new is an __________, not a PR lackey.
5. The Webville Motors test car comes in this

color.
6. Using a constructor, we can make our cars so

they have all the same ___________.
8. Never hold a ___________ over your laptop.

12. The limo and the limoDog are the same
_________.

13. To create an object with a constructor, you
use the ____ operator.

ACROSS
2. A constructor is a ____________.
7. If you want to save my birthday in a variable, you'll
need a ______ constructor.
9. You can use an object literal to pass arguments to a
constructor when the constructor has lots of these.
10. When you create an object from a constructor, we say
it is an __________ of the constructor.
11. A constructor is a bit like a _______ cutter.
14. The constructor function returns the newly
constructed __________.
15. If you forget to use new with a constructor, you might
see a ___________.

DOWN
1. Constructor syntax is a bit ______________.
3. You can add a property to an object created by a

________ whenever you want.
4. new is an __________, not a PR lackey.
5. The Webville Motors test car comes in this color.
6. Using a constructor, we can make our cars so they
have all the same ___________.
8. Never hold a ___________ over your laptop.
12. The limo and the limoDog are the same _________.
13. To create an object with a constructor, you use the
____ operator.

you are here 4 555

advanced object construction

,,,,,,,`
We need your help. We’ve been using object literals to create ducks. Given what you
learned above, can you write a constructor to create ducks for us? You’ll find one of our
object literals below to base your constructor on. Here’s our solution.

var duck = {

 type: "redheaded",

 canFly: true

} Write a constructor
for creating ducks.

P.S. We know you haven’t fully figured out how this all
works yet, so for now concentrate on the syntax.

Here’s an example
duck object literal.

function Duck(type, canFly) {

 this.type = type;

 this.canFly = canFly;

}

Get some quick hands on
experience to help this all sink
in. Go ahead and put this code
in a page and give it a test drive.
Write your output here.

function Dog(name, breed, weight) {
 this.name = name;
 this.breed = breed;
 this.weight = weight;
}
var fido = new Dog("Fido", "Mixed", 38);
var fluffy = new Dog("Fluffy", "Poodle", 30);
var spot = new Dog("Spot", "Chihuahua", 10);
var dogs = [fido, fluffy, spot];

for (var i = 0; i < dogs.length; i++) {
 var size = "small";
 if (dogs[i].weight > 10) {
 size = "large";
 }
 console.log("Dog: " + dogs[i].name
 + " is a " + size
 + " " + dogs[i].breed);
}

JavaScript console

Dog: Fido is a large Mixed
Dog: Fluffy is a large Poodle
Dog: Spot is a small Chihuahua

556 Chapter 12

exercise solutions

Below, you’ll find JavaScript code with some mistakes in it.
Your job is to play like you’re the browser and find

the errors in the code. Here’s our solution.

BE the Browser Solution

function widget(partNo, size) {

 var this.no = partNo;

 var this.breed = size;

}

function FormFactor(material, widget) {

 this.material = material,

 this.widget = widget,

 return this;

}

var widgetA = widget(100, "large");

var widgetB = new widget(101, "small");

var formFactorA = newFormFactor("plastic", widgetA);

var formFactorB = new ForumFactor("metal", widgetB);

If widget is to be a constructor, it
needs a capital letter for W. That
won’t cause an error, but it’s a good
convention to follow.

We don’t need “var” in front of this.
We’re not declaring new variables, we’re adding properties to an object.

Also, by convention we usually name the parameters
the same as the property names. So probably
this.partNo and this.size would be better.

We’re using commas
instead of semicolons.
Remember, in the
constructor we use
normal statements
rather than comma
separated property
name/value pairs.

We’re returning this and we don’t
need to. The constructor will do it
for us. This statement won’t cause
an error, but it’s not necessary.

Forgot new!

Needs a space
between new and the
constructor name.

Misspelled the name of the constructor.

you are here 4 557

advanced object construction

We’ve got a constructor to create coffee drinks, but it’s missing its
methods.

We need a method, getSize, that returns a string depending on the
number of ounces of coffee:

 � 8oz is a small

 � 12oz is a medium

 � 16oz is a large

We also need a method, toString, that returns a string specifying your order.

Write your code below, and then test it in the browser. Try creating a few different
sizes of coffee. Here’s our solution.

function Coffee(roast, ounces) {

 this.roast = roast;

 this.ounces = ounces;

 this.getSize = function() {

 if (this.ounces === 8) {

 return "small";

 } else if (this.ounces === 12) {

 return "medium";

 } else if (this.ounces === 16) {

 return "large";

 }

 };

 this.toString = function() {

 return "You've ordered a " + this.getSize() + " "
 + this.roast + " coffee.";

 };

}

var houseBlend = new Coffee("House Blend", 12);

console.log(houseBlend.toString());

var darkRoast = new Coffee("Dark Roast", 16);

console.log(darkRoast.toString());

The getSize method looks
at the ounces property of
the object, and returns the
corresponding size string.

JavaScript console

You've ordered a medium House
Blend coffee.
You've ordered a large Dark
Roast coffee.

Here's our output; yours
should look similar.

The toString method just returns a string
description of the object. It uses the getS

ize
method to get the size of the coffee.

Remember, this will be the object whose method we call. So if we call houseBlend.size, then this will be the houseBlend object.

We create two
coffee objects
and call the
toString
method and
display the
resulting string.

558 Chapter 12

exercise solutions

Use everything you’ve learned to create a Car constructor. We suggest the following order:

1

2

3

Start by providing the function keyword (actually we did that for you) followed by the
constructor name. Next supply the parameters; you’ll need one for each property that
you want to supply an initial value for.

Next, assign each property in the object its initial value (make sure you use this
along with the property name).

Finally, add in the three car methods: start, drive and stop.

1

2

3

function Car(make, model, year, color, passengers, convertible, mileage) {

 this.make = make;
 this.model = model;
 this.year = year;
 this.color = color;
 this.passengers = passengers;
 this.convertible = convertible;
 this.mileage = mileage;
 this.started = false;

 this.start = function() {
 this.started = true;
 };
 this.stop = function() {
 this.started = false;
 };
 this.drive = function() {
 if (this.started) {
 console.log("Zoom zoom!");
 } else {
 console.log("You need to start the engine first.");
 }
 };
}

The constructor name is Car.
Here’s our solution.

And seven parameters, one for each
property we want to customize.

Each property of the new car object
that’s customized with a parameter is set
to the parameter name. Notice we’re using
the same name for the property and the
parameter by convention.

The methods are exactly the same as
before, but now they’re assigned to
properties in the object with slightly
different syntax because we’re in a
constructor not an object literal.

The started property is
just initialized to false.

you are here 4 559

advanced object construction

Copy the Car and Dog constructors into one file, and then add the
code below along with it. Give this a run and capture the output.
Here’s our result:

var limoParams = {make: "Webville Motors",
 model: "limo",
 year: 1983,
 color: "black",
 passengers: 12,
 convertible: true,
 mileage: 21120};

var limo = new Car(limoParams);
var limoDog = new Dog("Rhapsody In Blue", "Poodle", 40);

console.log(limo.make + " " + limo.model + " is a " + typeof limo);
console.log(limoDog.name + " is a " + typeof limoDog);

What we got.

JavaScript console
Webville Motors limo is a object
Rhapsody In Blue is a object

560 Chapter 12

exercise solutions

We need a function, dogCatcher, that returns true if the object passed to it is
a Dog, and false otherwise. Write that function and test it with the rest of the
code below. Here’s our solution:

function dogCatcher(obj) {
 if (obj instanceof Dog) {
 return true;
 } else {
 return false;
 }
}

function Cat(name, breed, weight) {
 this.name = name;
 this.breed = breed;
 this.weight = weight;
}
var meow = new Cat("Meow", "Siamese", 10);
var whiskers = new Cat("Whiskers", "Mixed", 12);

var fido = {name: "Fido", breed: "Mixed", weight: 38};

function Dog(name, breed, weight) {
 this.name = name;
 this.breed = breed;
 this.weight = weight;
 this.bark = function() {
 if (this.weight > 25) {
 alert(this.name + " says Woof!");
 } else {
 alert(this.name + " says Yip!");
 }
 };
}
var fluffy = new Dog("Fluffy", "Poodle", 30);
var spot = new Dog("Spot", "Chihuahua", 10);
var dogs = [meow, whiskers, fido, fluffy, spot];

for (var i = 0; i < dogs.length; i++) {
 if (dogCatcher(dogs[i]) {
 console.log(dogs[i].name + " is a dog!");
 }
}

JavaScript console
Fluffy is a dog!

Spot is a dog!

function dogCatcher(obj) {

 return (obj instanceof Dog);

}

Or more succinctly:

you are here 4 561

advanced object construction

function CarProtoype() { this.make = "Webville Motors"; this.year = 2013;
 this.start = function() {...}; this.stop = function() {...}; this.drive = function() {...};}

var taxi = new CarPrototype();

taxi.model = "Delorean Remake";

taxi.color = "silver";

taxi.currentTime = new Date();

taxi.fluxCapacitor = {type: "Mr. Fusion"};

taxi.timeTravel = function(date) {...};

Draw your car here.

And customize
the prototype
here.

Oh, and where are we going with
this? You’ll find out in the next
chapter! By the way, you’re done
with this chapter now.

Webville Motors is revolutionizing car production by creating all
their cars from a prototype car. The prototype gives you all the
basics you need: a way to start, drive and stop it along with a
couple properties like the make and year it was manufactured—
but the rest is up to you. Want it to be red or blue? No problem,
just customize it. Need for it to have a fancy stereo? No problem,
go crazy, add it.

So this is your opportunity to design your perfect car. Check out
our design below.

562 Chapter 12

exercise solutions

F
1

R
A

F
2

U N C
3

T I O N
O
4

O K
M
5

P P
6

N E
D
7

A T E R S N T
8

R R O T S E
I A P

9
A R A M E T E R S

I
10

N S T A N C E U E T
E O R C

11
O O K I E T

R T
12

T T N U N
13

Y I O I O
14

B J E C T
T
15

Y P E E R R O R A E W
E S N

Across
2. A constructor is a ____________.

[FUNCTION]
7. If you want to save my birthday in a variable,

you'll need a ______ constructor. [DATE]
9. You can use an object literal to pass

arguments to a constructor when the
constructor has lots of these.
[PARAMETERS]

10. When you create an object from a
constructor, we say it is an __________ of
the constructor. [INSTANCE]

11. A constructor is a bit like a _______ cutter.
[COOKIE]

14. The constructor function returns the newly
constructed __________. [OBJECT]

15. If you forget to use new with a constructor,
you might see a ___________.
[TYPEERROR]

Down
1. Constructor syntax is a bit

______________. [FRANKENSTEINIAN]
3. You can add a property to an object created

by a ________ whenever you want.
[CONSTRUCTOR]

4. new is an __________, not a PR lackey.
[OPERATOR]

5. The Webville Motors test car comes in this
color. [MARINE]

6. Using a constructor, we can make our cars so
they have all the same ___________.
[PROPERTIES]

8. Never hold a ___________ over your laptop.
[TESTTUBE]

12. The limo and the limoDog are the same
_________. [TYPE]

13. To create an object with a constructor, you
use the ____ operator. [NEW]

JavaScript cross Solution

this is a new chapter 563

Extra strength objects

13 using prototypes

Learning how to create objects was just the beginning.
It’s time to put some muscle on our objects. We need more ways to create

relationships between objects and to share code among them. And, we need

ways to extend and enhance existing objects. In other words, we need more

tools. In this chapter, you’re going to see that JavaScript has a very powerful

object model, but one that is a bit different than the status quo object-oriented

language. Rather than the typical class-based object-oriented system, JavaScript

instead opts for a more powerful prototype model, where objects can inherit

and extend the behavior of other objects. What is that good for? You’ll see soon

enough. Let’s get started...

564 Chapter 13

talking about objects and inheritance

If you’re used to Java, C++, or any language based on classical
object-oriented programming let’s have a quick chat.
And if you aren’t... what, you got a date? Take a seat, and go along for the ride—you
might just learn something as well.

We’ll give it to you straight: JavaScript doesn’t have a classical object-oriented model,
where you create objects from classes. In fact, JavaScript doesn’t have classes at all. In
JavaScript, objects inherit behavior from other objects, which we call prototypal inheritance,
or inheritance based on prototypes.

JavaScript gets a lot of groans (and confused looks) from those trained in object-
oriented programming, but know this: prototype-based languages are more general
than classical object oriented ones. They’re more flexible, efficient and expressive.
So expressive that if you wanted to, you could use JavaScript to implement classical
inheritance.

So, if you are trained in the art of classical object-oriented programming, sit
back, relax, open your mind and be ready for something a little different. And if
you have no idea what we’re talking about when we say “classical object-oriented
programming,” that just means you’re starting fresh, which is often a very good thing.

Sorry, but you’re going
to have to unlearn all

that classical object-oriented
inheritance stuff you learned

with Java and C++.

And if you haven’t learned classical inheritance, you’re lucky because you don’t have to unlearn anything!

This may change in the future: the next version of JavaScript may add classes. So keep an eye out on wickedlysmart.com/hfjs for the latest on this.

Left to the reader as an exercise.

http://wickedlysmart.com/hfjs

you are here 4 565

using prototypes

name: “Fido”

breed: “Mixed”

weight: 38

bark()Dog

Hey, before we get started, we’ve got a
better way to diagram our objects
The object diagrams we’ve been using are cute and all that, but this is the
serious objects chapter, so we’re going to get more serious about our object
diagrams. Actually, we really like the old ones, but the object diagrams in
this chapter get complicated enough we just can’t squeeze everything we
need to into them.

So, without further ado, let us present the new format:

name: “Fido”
breed: “Mixed”
weight: 38

Dog

bark()

Here are the

properties.

Here's the constructor. And here are
the methods.

Here are the
properties.

Here's the constructor.

And here are
the methods.

OLD SCHOOL NEW AND IMPROVED

,,,,,,,`
Do a little practice just to make sure you’ve got the new format down. Take
the object below and redo it in the new and improved object diagram.

brand: “Head First”
model: 2112

inUse: true
sharpen()

PencilSharpener

clean()

Fill in this
object diagram.

566 Chapter 13

looking closely at objects

Revisiting object constructors: we’re reusing
code, but are we being efficient?
Remember the Dog constructor we created in the last chapter? Let’s take another quick
look and review what we’re getting out of using the constructor:

name: "Fido"
breed: "Mixed"
weight: 38

Dog

bark()

name: "Fluffy"
breed: "Poodle"
weight: 30

Dog

bark()

name: "Spot"
breed: "Chihuahua"
weight: 10

Dog

bark()

function bark() {
 // code to bark
}

function bark() {
 // code to bark
}

function bark() {
 // code to bark
}

function Dog(name, breed, weight) {
 this.name = name;
 this.breed = breed;
 this.weight = weight;
 this.bark = function() {
 if (this.weight > 25) {
 console.log(this.name + " says Woof!");
 } else {
 console.log(this.name + " says Yip!");
 }
 };
}

And here each object
has a reference to
the bark function.

Here are the three
different dog objects,
each with its own values
in the properties.

Every dog can have its own custom values
and a consistent set of properties.

var fido = new Dog("Fido", "Mixed", 38);

var fluffy = new Dog("Fluffy", "Poodle", 30);

var spot = new Dog("Spot", "Chihuahua", 10);

Even better, we're totally
reusing code across all the dogs.

So by using the constructor we get a nice, consistent dog object that we can customize to
our liking, and, we also can leverage the methods that are defined in it (in this case there’s
only one, bark). Further, every dog gets the same code from the constructor, saving us
lots of code headaches if things change in the future. That’s all great, but let’s look at
what happens at runtime when we evaluate the code below:

And every dog comes complete
with a bark method.

This code causes three dog objects to be created. Let’s use our new object diagrams to
see what that looks like:

But wait a second,
each dog has its own,
individual bark function.
They all do the same
thing, but each dog has
it's own copy of the
function.

At a code level we've got
reuse, but at runtime it
looks like we get a new
duplicate function with
every dog.

you are here 4 567

using prototypes

The browser.

Hey! You up there!

I’ve cornered the dog
market and it’s all thanks to your Dog

constructor. Check it out...

If this was a mobile device
we’d be dead already.

You’re killing us down
here with all those extra

methods you’re creating. We’re
just about to run out of memory
and then it’s game over!

568 Chapter 13

reusing behavior

Personally, I think every dog
should have her very own bark
method. Just sayin’.

Is duplicating methods really a problem?
Actually, it is. In general we don’t want a new set of methods being created
every time you instantiate an object with a constructor. Doing so hurts the
performance of your application and impacts resources on your computer,
which can be a big deal, particularly on mobile devices. And, as you’re going to
see, there are more flexible and powerful ways to craft your JavaScript objects.

Let’s take a step back and think about one of the main reasons we used
constructors in the first place: we were trying to reuse behavior. For instance,
remember that we had a bunch of dog objects and we wanted all those objects
to use the same bark method. By using a constructor we achieved this at a code
level by placing the bark method in one place—inside the Dog constructor—
and so we reused the same bark code each time we instantiated an object. But,
our solution doesn’t look as promising at runtime because every dog instance is
getting its own copy of the bark method.

Now the reason we’re running into this problem is because we aren’t taking full
advantage of JavaScript’s object model, which is based on the idea of prototypes.
In this model, we can create objects that are extensions of other objects—that is,
of prototype objects.

To demonstrate prototypes, hmm… if only we had a dog prototype around that
we could work from…

Typically when we talk
about an object’s “behavior”
we're referring to the set
of methods it supports.

you are here 4 569

using prototypes

I’m the dog
prototype. I’ve got properties
that every dog needs and you

can use me as a prototype for
any dog you want to create.

What are prototypes?
JavaScript objects can inherit properties and behavior from other
objects. More specifically, JavaScript uses what is known as prototypal
inheritance, and the object you’re inheriting behavior from is called
the prototype. The whole point of this scheme is to inherit and reuse
existing properties (including methods), while extending those
properties in your brand new object. That’s all quite abstract so let’s
work through an example.

We’ll start with a prototype for a dog object. Here’s what it might
look like:

species: "Canine"

Dog Prototype

bark()
run()
wag()

Contains properties
useful to every dog.

Contains behavior we'd
like to use in all dogs
that we create.

Here's a prototype for dogs. This is an
object that contains properties and
methods that all dogs might need.

The prototype doesn't include name, breed
or weight because those will be unique to
each dog, and supplied by the real dogs
that inherit from the prototype.

So now that we have a good dog prototype, we can create dog
objects that inherit properties from that prototype. Our dog
objects will also extend the prototype properties with dog-specific
properties or behaviors. For example, we know we’ll be adding a
name, breed and weight to each dog.

You’ll see that if any of these dogs needs to bark, run or wag
their tails, they can rely on the prototype for those behaviors,
because they inherit them from the prototype. So, let’s create a
few dog objects so you can see how this all works.

When an object inherits from
another, it gains access to all its
methods and properties.

570 Chapter 13

dog inheritance

Fido only needs to
contain the name,
breed and weight.

Same with Fluffy.

species: "Canine"

Dog Prototype

bark()
run()
wag()

Re
ad

thi
s d

ash
ed

line

as
“in

her
its

 fr
om

.”

And so on for
each dog we
create.

Inheriting from a prototype
First, we need to create object diagrams for the Fido, Fluffy and Spot dog objects and have them
inherit from the new dog prototype. We’ll show inheritance by drawing a set of dashed lines from
the dog instances to the prototype. And remember, we put only the methods and properties that are
common to all dogs in the dog prototype, because all the dogs will inherit them. All the properties
specific to an actual dog, like the dog’s name, go into the dog instances, because they are different
for each dog.

Here we have three dog
objects that inherit from the
dog prototype. The prototype
contains properties (including
methods) shared by all the
dogs. The dogs themselves
contain the properties
specific to each dog: a name,
breed and weight.

name: “Fluffy”
breed: “Poodle”
weight: 30

Dog
name: “Spot”
breed: “Chihuahua”
weight: 10

Dog
name: “Fido”
breed: “Mixed”
weight: 38

Dog

Properties and methods
common to all dogs are here.

you are here 4 571

using prototypes

How inheritance works
How do we make dogs bark if the bark method isn’t in the individual dog
instances, but rather is in the prototype? That’s where inheritance comes in.
When you call a method on an object instance, and that method isn’t found in
the instance, you check the prototype for that method. Here’s how.

species: "Canine"

Dog Prototype

bark()
run()
wag()

fido.bark();

No bark method
here! So look UP
at the prototype...

1 First we need some code. How about
we call the bark method of a dog object,
like this:

2 To evaluate this code we look
in the fido instance for a bark
method. But there isn’t one.

name: “Fido”
breed: “Mixed”
weight: 38

Dog 3 If we can’t find bark in the fido
instance, then we take a look next
at its prototype.

4 Checking the Dog prototype we
see it does have a bark method.

5 Finally, once we find the
bark method, we invoke
it, which results in Fido
barking.function bark() {

 // code to bark
}

Just an everyday call
to the fido object’s
bark method.

Properties work the same way. If we write code that needs fido.name,
the value will come from the fido object. But if we want the value of
fido.species, we first check the fido object, but when it isn’t found
there, we check the dog prototype (and find it).

function bark() {
 // code to bark
}

function bark() {
 // code to bark
}

Start here and
follow the numbers:
1, 2, 3, 4, 5

572 Chapter 13

using a prototype for inheritance

So now that you have this
newfangled inheritance thing, I can

fire up the dog factory again?

species: "Canine"

Dog Prototype

bark()
run()
wag()

function bark() {
 // code to bark
}

name: “Smokey”
breed: “Chow Chow”
weight: 40

Dog
name: “Woofy”
breed: “Mixed”
weight: 20

Dog
name: “LadyBug”
breed: “Hound”
weight: 55

Dog
name: “Barnaby”
breed: “Basset Hound”

weight: 55

Dog
name: “Fido”
breed: “Mixed”
weight: 38

Dog
name: “Max”
breed: “Hotdog”
weight: 38

Dog

Now we only have a
single bark function.
Much better.

He’s started producing
lots of dogs already.
Here’s a bunch of
instances he’s created,
all inheriting from the
dog prototype.

Every dog has been customized with its name,
breed and weight, but relies on the prototype
for the species property and the bark method.

Thank you! Before you
started using inheritance
we were dying down here!

Now that you understand how to use inheritance we can
create a large number of dogs. All the dogs can all still bark,
but now they’re relying on the dog prototype object to supply
that bark method. We have code reuse, not just by having
our code written in one place, but by having all dog instances
use the same bark method at runtime, which means we aren’t
causing lots of runtime overhead.

You’re going to see that by using prototypes, you’ll be able
to quickly assemble objects that reuse code, and that can be
extended with new behavior and properties.

function bark() {
 // code to bark
}

function bark() {
 // code to bark
}

you are here 4 573

using prototypes

species: "Canine"

Dog Prototype

bark()
run()
wag()

name: “Spot”
breed: “Chihuahua”
weight: 10

Dog

Overriding the prototype
Just because you inherit something from the prototype
doesn’t mean you’re stuck with it. We can always override
properties and methods by supplying them in the object
instance. That works because JavaScript always looks in
the object instance—that is, the specific dog object—for a
property before it looks in the prototype. So, if you want to
use a custom bark method for spot, all you have to do is
put that custom bark method in the spot object. Once
you do that, when JavaScript looks for the bark method to
invoke, it will find the method in spot, and won’t bother
looking in the prototype.

Let’s see what it looks like when we override Spot’s bark
method to give him the ability to have a big “WOOF” bark.

“Yip” isn’t a very
good bark for me. I need
something BIGGER! How
about “WOOF!” in all caps?!

function bark() {
 // code to bark
}

function bark() {
 // WOOF code
}

This is a custom bark
method, just for spot.

With all that in place we
can call bark.

spot.bark();

But spot gets his own bark
method that says “WOOF!”.

The bark method in the prototype isn’t used for spot, but it’s still used in fido and fluffy.

Spot.

bark()

Prototype dog
stays the same...

We start looking for the bark
method first in the spot object.

And we find it, so no need to
look further at the prototype.
When we use this method we
get a big WOOF!.

function bark() {
 // code to bark
}

function bark() {
 // code to bark
}

574 Chapter 13

exercise for prototypes

Code Magnets
We had an object diagram on the fridge, and then someone came and messed it up. Can you
help put it back together? To reassemble it, we need two instances of the robot prototype.
One is Robby, created in 1956, owned by Dr. Morbius, has an on/off switch and runs to
Starbucks for coffee. We’ve also got Rosie, created in 1962, who cleans house and is owned by
George Jetson. Good luck (oh, and there might be some extra magnets below)!

Build the object diagram here.maker: "ObjectsRUs"

Robot Prototype

speak()
makeCoffee()
blinkLights()

name: "Robby"

Robot

function
blinkLights() {
 // code 4 lights
}

function speak() {
 // code to speak
}

function
makeCoffee() {
 // starbucks
}

function
makeCoffee() {
 // code 4 coffee
}

name: "Rosie"

Robot

owner: "Dr. Morbius" year: 1956

year: 1962owner: "George Jetson"

makeCoffee()

function
cleanHouse() {
 // code 4 clean
}

onOffSwitch: true

Here’s the
prototype your
robots can
inherit from.

makeCoffee()
cleanHouse()

you are here 4 575

using prototypes

So where do you get a prototype?
We’ve talked a lot about the dog prototype, and at this point,
you’re probably ready to see an example that uses code rather
than diagrams. So, how do we create or get a hold of a dog
prototype? Well, it turns out, you’ve actually had one all along.
You just didn’t know it.

And here’s how you access it in code:

Dog.prototype If you look at your Dog constructor, it has
a prototype property that holds a reference
to the actual prototype.

Now, if you take this prototype property…

Hold it right there. Dog
is a constructor—in other words, a
function. Remember? What do you
mean it has a property?

Don’t look at the man behind the curtain!
Just kidding; you’re right. We were trying to gloss over that
point (and we really still intend to, for now). Here’s the
short story: functions are objects in JavaScript. In fact, in
JavaScript just about everything is an object underneath,
even arrays if you haven’t figured that one out yet.

But, for now, we don’t want to get sidetracked on this. Just
know that functions, in addition to doing everything you
already know they can do, can also have properties, and in
this case, the constructor always has a prototype property.
More on functions and other things that are objects later,
we promise.

576 Chapter 13

customizing a prototype

How to set up the prototype

As we were saying, you can access the prototype object through the Dog
constructor’s prototype property. But what properties and methods are in
the prototype object? Well, until you set it up yourself, not much. In other
words it’s your job to add properties and methods to the prototype. We
typically do that before we start using the constructor.

So, let’s set up the dog prototype. First we need a constructor to work from, so
let’s look at our object diagram to see how to make that:

Dog.prototype.species = "Canine";

Dog.prototype.bark = function() {
 if (this.weight > 25) {
 console.log(this.name + " says Woof!");
 } else {
 console.log(this.name + " says Yip!");
 }
};

Dog.prototype.run = function() {
 console.log("Run!");
};

Dog.prototype.wag = function() {
 console.log("Wag!");
};

function Dog(name, breed, weight) {
 this.name = name;
 this.breed = breed;
 this.weight = weight;
}

name: “Spot”
breed: “Chihuahua”
weight: 10

Dog
This is the constructor
to create an instance
of a dog. Each instance
has its own name, breed
and weight., so let’s
incorporate those into
the constructor.

But we’re going to get our methods from the
prototype, so we don’t need them in the constructor.

Okay, now that we have a constructor, let’s set up our dog prototype. We want
it to have the species property and the bark, run and wag methods. Here’s
how we do that:

We assign the string “Canine” to the
prototype’s species property.

And for each method, we assign the
appropriate function to the prototype’s
bark, run and wag properties respectively.

Serious Coding
Don’t forget about chaining:

Dog.prototype.species

Start with Dog and grab its prototype property, which
is a reference to an object that has a species property.

you are here 4 577

using prototypes

Test drive the prototype with some dogs

function Dog(name, breed, weight) {
 this.name = name;
 this.breed = breed;
 this.weight = weight;
}

Dog.prototype.species = "Canine";

Dog.prototype.bark = function() {
 if (this.weight > 25) {
 console.log(this.name + " says Woof!");
 } else {
 console.log(this.name + " says Yip!");
 }
};

Dog.prototype.run = function() {
 console.log("Run!");
};

Dog.prototype.wag = function() {
 console.log("Wag!");
};

var fido = new Dog("Fido", "Mixed", 38);
var fluffy = new Dog("Fluffy", "Poodle", 30);
var spot = new Dog("Spot", "Chihuahua", 10);

fido.bark();
fido.run();
fido.wag();

fluffy.bark();
fluffy.run();
fluffy.wag();

spot.bark();
spot.run();
spot.wag();

Go ahead and get this code typed into a file (“dog.html”) and loaded
into your browser for testing. We’ve reproduced all the code after the
changes we made on the previous page, and added a bit of testing code.
Make sure all your dogs bark, run and wag like they should.

Each dog is
barking, running
and wagging.
Good.

But wait a second, didn't Spot want his bark to be WOOF!?

Here's the Dog constructor.

And here's where we add properties and
methods to the dog prototype.

We're adding one property and
three methods to the prototype.

Now, we create the
dogs like normal...

... and then we call the methods for each dog, just like normal. Each dog inherits the methods from the prototype.

JavaScript console
Fido says Woof!
Run!
Wag!
Fluffy says Woof!
Run!
Wag!
Spot says Yip!
Run!
Wag!

578 Chapter 13

overriding the prototype

Give Spot his WOOF! in code

Hey, don’t forget
about me. I requested a
bigger WOOF!

Don’t worry, we didn’t forget about Spot. Spot
requested a bigger WOOF! so we need to override the
prototype to give him his own custom bark method.
Let’s update the code:

...

var spot = new Dog("Spot", "Chihuahua", 10);

spot.bark = function() {
 console.log(this.name + " says WOOF!");
};

// calls to fido and fluffy are the same

spot.bark();
spot.run();
spot.wag();

The only change we
make to the code is
to give Spot his own
custom bark method.

We don't need to change how we call Spot's bark method at all.

Test drive the custom bark method

Add the new code above and take it
for a quick test drive…

Spot gets the WOOF!
he wanted.

The rest of the code goes here. We’re just saving
trees, or bits, or our carbon footprint, or something...

JavaScript console
Fido says Woof!
Run!
Wag!
Fluffy says Woof!
Run!
Wag!
Spot says WOOF!
Run!
Wag!

you are here 4 579

using prototypes

v

function Robot(name, year, owner) {

 this.name = name;

 this.year = year;

 this.owner = owner;

}

Robot.prototype.maker =

Robot.prototype.speak =

Robot.prototype.makeCoffee =

Robot.prototype.blinkLights =

var robby =

var rosie =

robby.onOffSwitch =

robby.makeCoffee =

rosie.cleanHouse =

console.log(robby.name + " was made by " + robby.maker +

 " in " + robby.year + " and is owned by " + robby.owner);

robby.makeCoffee();

robby.blinkLights();

console.log(rosie.name + " was made by " + rosie.maker +

 " in " + rosie.year + " and is owned by " + rosie.owner);

rosie.cleanHouse();

Remember our object diagram for the Robby and Rosie robots? We’re going to implement that
now. We’ve already written a Robot constructor for you along with some test code. Your job is to
set up the robot prototype and to implement the two robots. Make sure you run them through the
test code.

Use this code to test your instances to make sure they are working properly and inheriting from the prototype.

You’ll want to set up the
robot prototype here.

Here’s the basic Robot
constructor. You still need
to set up its prototype.

Write your code to create the Robby
and Rosie robots here. Make sure you
add any custom properties they have
to the instances. Use your solution to
the Code Magnets on page 574 to
construct robby and rosie.

580 Chapter 13

thinking about prototypes

Good question. When we didn’t have
prototypes this was easy because we know
this gets set to the object whose method
was called. When we are calling the bark
method in the prototype, you might think
that this is now set to the prototype object.
Well, that’s not how it works.

When you call an object’s method, this is
set to the object whose method was called.
If the method is not found in that object,
and is found in the prototype, that doesn’t
change the value of this. this always
refers to the original object—that is, the
object whose method was called—even if
the method is in the prototype. So, if we
find the bark method in the prototype,
then we call the method, with this set to
the original dog object, giving us the result
we want, like “Fluffy says Woof !”.

I was wondering how this.name in the bark
method still works given that the bark method is
in the prototype and not in the original object.

you are here 4 581

using prototypes

Teaching a dog a new trick
It’s time to teach our dogs a new trick. That’s right we said “dogs” plural, not dog. You
see, now that we have a prototype, if we add any methods to that prototype, even after
we’ve already created dog objects, all dogs inheriting from the prototype immediately
and automatically get this new behavior.

Let’s say we want to teach all our dogs to sit. What we do is add a method to the
prototype for sitting.

1 We create a new dog Barnaby.

2 Next we add a new method,
sit, to the prototype.

3 We call the barnaby.sit
method, but we can’t find sit in
barnaby object.

But we do find sit in the
prototype, and we invoke it.

species: "Canine"

Dog Prototype

bark()
run()
wag()

function bark() {
 // code to bark
}

function bark() {
 // code to bark
}

function bark() {
 // code to bark
}

name: “Barnaby”
breed: “Basset Hound”

weight: 55

Dog

sit()

function sit() {
 // code to sit
}

all s

var barnaby = new Dog("Barnaby", "Basset Hound", 55);

Dog.prototype.sit = function() {
 console.log(this.name + " is now sitting");
};

We’ll give this a try with Barnaby:

Let's create another dog
to test this on.

And then let's add the
sit method.

barnaby.sit();
We first check to see if the
barnaby object has a sit method
and there isn't one. So we then
check the prototype, find the sit
method, and invoke it.

Let’s take a closer look at how this works. Make sure you follow the sequence 1, 2, 3, 4.

JavaScript console
Barnaby is now sitting

A Closer Look

4

582 Chapter 13

questions about prototypes

species: "Canine"

Dog Prototype

bark()
run()
wag()

Any dog object that has
the Dog prototype can
now use the sit method.

function bark() {
 // code to bark
}

function bark() {
 // code to bark
}

function bark() {
 // code to bark
}

name: “Barnaby”
breed: “Basset Hound”

weight: 55

Dog

sit()

function sit() {
 // code to sit
}

Prototypes are dynamic
We’re glad to see Barnaby can now sit. But it turns out that now all our
dogs can sit, because once you add a method to a prototype, any objects
that inherit from that prototype can make use of that method:

This works for
properties too,
of course.

name: “Smokey”
breed: “Chow Chow”
weight: 40

Dog
name: “Woofy”
breed: “Mixed”
weight: 20

Dog
name: “LadyBug”
breed: “Hound”
weight: 55

Dog
name: “Fido”
breed: “Mixed”
weight: 38

Dog
name: “Max”
breed: “Hotdog”
weight: 38

Dog

 Q: So when I add a new method or property to a prototype,
all the object instances that inherit from it immediately see it?

A: If by “see it” you mean that they inherit that method or property,
you are correct. Notice that this gives you a way to extend or change
the behavior of all your instances at runtime by simply changing their
prototype.

Q: I see how adding a new property to a prototype makes
that property available to all the objects that inherit from
the prototype. What if I change an existing property in the
prototype; does that affect those objects in the same way? Like
if I change the property species to “Feline” instead of “Canine”,
does that mean all existing dogs are now “Feline” species?

A: Yes. If you change any property in the prototype, it affects all
the objects that inherit from that prototype, unless that object has
overridden that property.

you are here 4 583

using prototypes

v Robby and Rosie are being used in a Robot game. You’ll find the code for them below. In this
game, whenever a player reaches level 42, a new robot capability is unlocked: the laser beam
capability. Finish the code below so that at level 42 both Robby and Rosie get their laser beams.
Check your answer at the end of the chapter before you go on.

function Game() {
 this.level = 0;
}

Game.prototype.play = function() {
 // player plays game here
 this.level++;
 console.log("Welcome to level " + this.level);
 this.unlock();
};

Game.prototype.unlock = function() {

};

function Robot(name, year, owner) {
 this.name = name;
 this.year = year;
 this.owner = owner;
}

var game = new Game();
var robby = new Robot("Robby", 1956, "Dr. Morbius");
var rosie = new Robot("Rosie", 1962, "George Jetson");

while (game.level < 42) {
 game.play();
}

robby.deployLaser();
rosie.deployLaser();

JavaScript console
Welcome to level 1
Welcome to level 2
Welcome to level 3
 ...
Welcome to level 41
Welcome to level 42
Robby is blasting you with
laser beams.
Rosie is blasting you with
laser beams.

A sample of our
output. When you
finish your code, give
it a play and see which
robot wins and gets to
blast its laser beams!

584 Chapter 13

using the prototype for initial values

Dog.prototype.sitting = false;

Dog.prototype.sit = function() {

 if (this.sitting) {

 console.log(this.name + " is already sitting");

 } else {

 this.sitting = true;

 console.log(this.name + " is now sitting");

 }

};

A more interesting implementation of the sit method
Let’s make the sit method a little more interesting: dogs will start in a state of not
sitting (in other words, standing up). So, when sit is called, if a dog isn’t sitting, we’ll
make him sit. Otherwise, we’ll let the user know he’s already sitting. To do this we’re
going to need an extra property, sitting, to keep track of whether the dog is sitting or
not. Let’s write the code:

By setting sitting to
false in the prototype, all
dogs start by not sitting. Then, in the sit method, we

check to see if the dog is sitting
or not. At first, when we check
this.sitting we’ll be looking at
the value in the dog prototype.

But, if the dog is not sitting, we say he’s now
sitting and then we set the value of this.sitting
to true. This overrides the prototype property
and sets the value in the instance.

Let’s give this a try for real. Go ahead and update your code, adding the new
property and implementation of sit. Now when we test drive this code, you can see
that we can make barnaby sit, and then make spot sit, and each dog keeps track of
whether it is sitting separately:

barnaby.sit()

barnaby.sit()

spot.sit()

spot.sit()

JavaScript console
Barnaby is now sitting
Barnaby is already sitting
Spot is now sitting
Spot is already sitting

Test drive the new sit method

We start with a sitting property in the prototype.

Notice that the instance now has its
own local sitting property, set to true.

If the dog is sitting, we say he’s
already sitting.

The interesting thing about this code is that when a dog instance starts out life, it inherits
a default value of false for sitting. But, as soon as the sit method is called, the dog
instance adds its own value for sitting, which results in a property being created in the
instance. This overrides the inherited sitting property in the prototype. This gives us a
way to have a default for all dogs, and then to specialize each dog if we need to.

you are here 4 585

using prototypes

1 We call spot.sit for the first
time. Spot doesn’t have a
sitting property.

2 So we look in the
prototype and see
that sitting is false.

3 We set this.sitting to true.
This adds a new sitting
property to Spot, and
assigns it the value true.

function bark() {
 // code to bark
}

function bark() {
 // code to bark
}

function bark() {
 // code to bark
}

function sit() {
 // code to sit
}

species: "Canine"

Dog Prototype

bark()
run()
wag()
sit()

sitting: false

name: “Spot”
breed: “Chihuahua”
weight: 10

Dog

bark()

4 We call spot.sit for the
second time. Spot now has a
sitting property, set to true.

function bark() {
 // code to bark
}

function bark() {
 // code to bark
}

function bark() {
 // code to bark
}

function sit() {
 // code to sit
}

species: "Canine"

Dog Prototype

bark()
run()
wag()
sit()

sitting: false

name: “Spot”
breed: “Chihuahua”
weight: 10
sitting: true

Dog

bark()

One more time: how the sitting property works
Let’s make sure we’ve got this down, because if you go too fast on this implementation you might
miss the key details. Here’s the key: the first time we get the value of sitting, we’re getting it from
the prototype. But then when we set sitting to true, that happens in the object instance, not the
prototype. And after that property has been added to the object instance, every subsequent time we
get the value of sitting, we’re getting it from the object instance because it is overriding the value
in the prototype. Let’s step through it one more time:

Step through the sequence
below (make sure to follow
1, 2, 3, 4), starting here.

586 Chapter 13

using hasownproperty

While we’re talking about
properties, is there a way in my

code to determine if I’m using a
property that’s in the instance or in
the prototype?

Yes, there is. You can use the hasOwnProperty method that
every object has. The hasOwnProperty method returns true if
a property is defined in an object instance. If it’s not, but you can
access that property, then you can assume the property must be
defined in the object’s prototype.

Let’s try it on fido and spot. First, we know that the species
property is implemented only in the dog prototype, and neither
spot nor fido has overridden this property. So if we call the
hasOwnProperty method and pass in the property name, “species”,
as a string, we get back false for both:

spot.hasOwnProperty("species");

fido.hasOwnProperty("species");

spot.hasOwnProperty("sitting");

spot.sitting = true;

spot.hasOwnProperty("sitting");

fido.hasOwnProperty("sitting");

Both of these return the value
false because species is defined
in the prototype, not the object
instances spot and fido.

Now let’s try it for the sitting property. We know that the sitting
property is defined in the prototype and initialized to false. So
we assign the value true to spot.sitting, which overrides the
sitting property in the prototype and defines sitting in the spot
instance. Then we’ll ask both spot and fido if they have their own
sitting property defined:

This call to hasOwnProperty
returns true, because spot now
has his own sitting property.

But this call to hasOwnProperty returns false, because the fido instance does not have a sitting property. That means the sitting property that fido uses is defined only in the prototype, and inherited by fido.

When we first check to see if Spot has
his own sitting property we get false.

Then we set spot.sitting to
true, adding this property to
the spot instance.

you are here 4 587

using prototypes

v We’ve added a new capability to our robots, Robby and Rosie: they can now report when they
have an error through the reportError method. Trace the code below, paying particular attention
to where this method gets its error information, and to whether it’s coming from the prototype of
the robot instance.

Below give the output of this code:

function Robot(name, year, owner) {
 this.name = name;
 this.year = year;
 this.owner = owner;
}

Robot.prototype.maker = "ObjectsRUs";
Robot.prototype.errorMessage = "All systems go.";
Robot.prototype.reportError = function() {
 console.log(this.name + " says " + this.errorMessage);
};
Robot.prototype.spillWater = function() {
 this.errorMessage = "I appear to have a short circuit!";
};

var robby = new Robot("Robby", 1956, "Dr. Morbius");
var rosie = new Robot("Rosie", 1962, "George Jetson");

rosie.reportError();
robby.reportError();
robby.spillWater();
rosie.reportError();
robby.reportError();

console.log(robby.hasOwnProperty("errorMessage"));
console.log(rosie.hasOwnProperty("errorMessage"));

Does Robby have his own
errorMessage property?

Does Rosie?

588 Chapter 13

webville kennel club needs you

Best Dog
 in Show
All your hard work in this chapter has already paid off. The Webville Kennel Club saw
your work on the dog objects and they immediately knew they’d found the right person to
implement their dog show simulator. The only thing is they need you to update the Dog
constructor to make show dogs. After all, show dogs aren’t ordinary dogs—they don’t
just run, they gait. They don’t go through the trash, they show a tendency towards scent
articles; they don’t beg for treats, they show a desire for bait.

More specifically, here’s what they’re looking for:

Wonderful work on the Dog

constructor! We’d love to get you

engaged on our dog show simulator.

Show dogs are a little different, so

they need additional methods (see below).

Thanks! -Webville Kennel Club

stack() - otherwise known as stand at attention.

gait() - this is like running. The method takes a string

argument of “walk”, “trot”, “pace”, or “gallop”.

bait() - give the dog a treat.

groom() - doggie shampoo time.

you are here 4 589

using prototypes

If we add all these new
methods into our existing Dog
constructor then all dogs will be
able to do these things. But, that’s
not what we intended.

We could
add the show dog

methods just to the
show dog instances,
but then we’re back

to all the problems we
uncovered at the

beginning of
the chapter.

So how are we going to design this? Clearly we’d like to make use of our existing
dog code. After all, that’s why Webville Kennel came to us in the first place. But
how? Let’s get some thoughts on the ways we could approach this:

How to approach the design of the show dogs

But if we create
our ShowDog constructor

from scratch then we’ll end
up reimplementing all the basic
methods: bark, run, sit...

590 Chapter 13

conversation about prototypes

Guys, relax. You can have
more than one prototype
with JavaScript.

Joe: More than one prototype? What does that even mean?

Judy: Think about it like your own inheritance.

Joe: What inheritance? If I had an inheritance I wouldn’t be working here! Just
kidding…

Judy: Well, you don’t just inherit qualities from your parents, right? You inherit a
little from your grandparents and your great-grandparents and so on.

Joe: Yeah, got that.

Judy: Well, with JavaScript you can set up a chain of prototypes that your object
inherits from.

Frank: An example might help.

Judy: Say you have a bird prototype that knows how to do all things most birds
do, like fly.

Frank: Easy enough, that’s like our dog prototype.

Judy: Now say you need to implement a whole set of ducks—mallards, red-headed
ducks…

Frank: …don’t forget the black-bellied-whistling duck.

Judy: Why, thank you Frank.

Frank: No problem. I was just reading about all those ducks in that Head First Design
Patterns book.

Judy: Okay, but ducks are a different kind of bird. They swim, and we don’t want to
put that into the bird prototype. But with JavaScript we can create a duck prototype that
inherits from the bird prototype.

Joe: So let me see if I have this right. We’d have a Duck constuctor that points to a duck
prototype. But that prototype—that is the duck prototype—would itself point to the bird
prototype?

Frank: Whoa, shift back into first gear.

Judy: Think of it like this, Frank. Say you create a duck and you call its fly method.
What happens if you look in the duck and there’s no such method? You look in the duck
prototype, still no fly method. So you look at the prototype the duck inherits from, bird,
and you find fly there.

Joe: And, if we call swim, then we look in the duck instance, nothing there. We look in
the duck prototype, and we find it.

Judy: Right… so we’re not just reusing the behavior of the duck prototype, we’re
following a chain up to the bird prototype, when necessary, to use that as well.

Joe: That sounds perfect for extending our dog prototype into a show dog. Let see what
we can do with this.

you are here 4 591

using prototypes

species: "Canine"

Dog Prototype

bark()
run()
wag()

name: “Spot”
breed: “Chihuahua”
weight: 10

Dog

name: “Fluffy”
breed: “Poodle”
weight: 30

Dog

name: “Fido”
breed: “Mixed”
weight: 38

Dog

name: “Scotty”
breed: “Scottish Terrier”

weight: 15
handler: “Cookie”

ShowDog

We still have our original
dog prototype.

But we also want to have show dogs,
and they’re special. They’re dogs,
but they have a bunch of behaviors
that regular dogs don’t.

league: “Webville”

ShowDog Prototype

stack()
bait()
gait()
groom()

And then we’ll create some real
instances of ShowDog, like this
Scottish Terrier.

And we can still have all the instances
that we need. These inherit directly
from the dog prototype.

Setting up a chain of prototypes
Let’s start thinking in terms of a chain of prototypes. Rather than having an instance that
inherits properties from just one prototype, there might be a chain of one or more
prototypes your instance can inherit from. It’s not that big a logical step from the way we’ve
been thinking about this already.

Let’s say we want a show dog prototype for our show dogs, and we want that prototype to
rely on our original dog prototype for the bark, run, and wag methods. Let’s set that up to
get a feel for how it all works together:

This prototype contains all the
general dog things every dog has: a species property, and methods to bark, run and wag its tail.

Or so their
handlers say...

Our new show dog
prototype.

Notice that ShowDog now contains all
the instance-specific properties, like
name, breed, weight and handler.

To keep this diagram simple we’ve
omitted the functions associated
with each method.

Oh, and this is a REAL handler, with a
leash and all that, not to be confused
with an event handler.

592 Chapter 13

the prototype chain

We’ve set up the prototype chain for the show dogs, so let’s see how inheritance works in this
context. Check out the properties and methods at the bottom of the page, and then trace them
up the prototype chain to the object where they are defined.

How inheritance works in a prototype chain

scotty.bark();

species: "Canine"

Dog Prototype

bark()
run()

wag()

name: “Scotty”
breed: “Scottish Terrier”

weight: 15
handler: “Cookie”

ShowDog

league: “Webville”

ShowDog Prototype

stack()
bait()

groom()
gait()

function bark() {
 // code to bark
}

function run() {
 // code to bark
}

function wag() {
 // code to bark
}

function stack() {
 // code to bark
}

function bait() {
 // code to bark
}

function gait() {
 // code to bark
}

function groom() {
 // code to bark
}

scotty.stack();

scotty.name;

scotty.league;

scotty.species;

Test each of these
methods and properties to
see where each is found in
the prototype chain.

NOT HERE NOT HERE NOT HEREHERE NOT HERE

NOT HERE NOT HERE

HERE

HERE

HERE

HERE

Scotty’s name is
in the ShowDog
instance.

The stack method and the
league property are inherited
from the ShowDog prototype.

The bark method and
the species property are
inherited from the original
Dog prototype.

Follow each property up the prototype
chain to see where it lives.

If you don’t find it in the instance, then it must be inherited
from the ShowDog prototype, or from the Dog prototype.

D
og

 P
ro

to
ty

pe
Sh

ow
D

og
 P

ro
to

ty
pe

Sh
ow

D
og

 In
st

an
ce

you are here 4 593

using prototypes

Code Magnets
We had another object diagram on the fridge, and then someone came and messed it up.
Again!! Can you help put it back together? To reassemble it we need a new line of Space Robots
that inherit properties from Robots. These new Space Robots override the Robot’s speaking
functionality, and extend Robots with piloting functionality and a new property, homePlanet.
Good luck (there might be some extra magnets below)! Build the object diagram here.

maker: "ObjectsRUs"

Robot Prototype

speak()
makeCoffee()
blinkLights()

function
speak() {
 // code to speak
}

function speak() {
 // code to speak
 // in space
}

function
pilot() {
 // code to pilot
 // spaceship
}

homePlanet: "Earth"

year: 1977

year: 2009

homePlanet: "Tatooine"

pilot()

Here’s the
prototype for
Robots.

speak()

Space Robot Prototype

name: "Robby"
year: 1956
owner: "Dr. Morbius"

Robot

name: "C3PO"
year: 1977
owner: "L. Skywalker"

Space Robot
name: "Simon"
year: 2009
owner: "Carla Diana"

Space Robot

function
makeCoffee() {
 // code 4 coffee
}

function
blinklights() {
 // code 4 lights
}

name: "Rosie"
year: 1962
owner: "George Jetson"

Robot
And here's the
prototype for the
Space Robots.

594 Chapter 13

creating a prototype chain

We have a dog
prototype, and a bunch
of dogs that inherit
from it.

We want a show dog prototype, that
inherits from the dog prototype...

species: "Canine"

Dog Prototype

bark()
run()
wag()

name: “Spot”
breed: “Chihuahua”
weight: 10

Dog

name: “Fluffy”
breed: “Poodle”
weight: 30

Dog

name: “Fido”
breed: “Mixed”
weight: 38

Dogleague: “Webville”

ShowDog Prototype

stack()
bait()
gait()
groom()

name: “Scotty”
breed: “Scottish Terrier”

weight: 15
handler: “Cookie”

ShowDog

And a show dog instance that inherits
from the show dog prototype.

This is what
we’re going for.

When we created the dog prototype we didn’t have to do anything—there was
already an empty object supplied by the Dog constructor’s prototype property.
So we took that and added the properties and methods we wanted our dog
instances to inherit.

But with the show dog prototype we have more work to do because we need a
prototype object that inherits from another prototype (the dog prototype). To do
that we’re going to have to create an object that inherits from the dog prototype
and then explicitly wire things up ourselves.

Right now we have a dog prototype and a bunch of dog instances that inherit
from that prototype. And what we want is a show dog prototype (that inherits
from dog prototype), and a bunch of show dog instances that inherit from the
show dog prototype.

Setting this up will take a few steps, so we’ll take it one at a time.

Creating the show dog prototype

you are here 4 595

using prototypes

First, we need an object that inherits from
the dog prototype
We’ve established that the show dog prototype is an object that inherits from
the dog prototype. But, what’s the best way to create an object that inherits
from the dog prototype? Well, it’s something you’ve already been doing as
you’ve created instances of dog. Remember? Like this:

var aDog = new Dog();

So this code creates an object that inherits from the dog prototype. We know
this because it’s exactly the same as how we created all our dog instances,
except this time, we didn’t supply any arguments to the constructor. That’s
because at the moment, we don’t care about the specifics of the dog; we just
need the dog to inherit from the dog prototype.

We’ve created a new dog instance. It
doesn’t have a name, breed or weight,
but we know it inherits from the dog
prototype, because it’s a dog.

Now, what we really need is a show dog prototype. Like our dog instance, that’s
just an object that inherits from the dog prototype. So let’s see how we can use
our empty dog instance to make the show dog prototype we need.

We’ll talk about what happened to the
constructor arguments in a minute...

To create an object that inherits from
the dog prototype, we just use new
with the Dog constructor.

species: "Canine"

Dog Prototype

bark()
run()
wag()

name: “Spot”
breed: “Chihuahua”
weight: 10

Dog

name: “Fluffy”
breed: “Poodle”
weight: 30

Dog

name: “Fido”
breed: “Mixed”
weight: 38

Dog

Dog

aDog

596 Chapter 13

using an object as a prototype

ShowDog.prototype = new Dog();

Next, turning our dog instance into a
show dog prototype
Okay, so we have a dog instance, but how do we make that our show dog prototype object?
We do this by assigning the dog instance to the prototype property of our ShowDog
constructor. Oh wait; we don’t have a ShowDog constructor yet... so let’s make one:

function ShowDog(name, breed, weight, handler) {

 this.name = name;

 this.breed = breed;
 this.weight = weight;

 this.handler = handler;

}

Now that we have a constructor, we can set its prototype property to a new dog instance:

So, let’s think about where we are: we have a ShowDog constructor, with which we can
make show dog instances, and we now have a show dog prototype, which is a dog instance.

Let’s make sure our object diagram accurately reflects the roles these objects are playing
by changing the label “Dog” to “ShowDog Prototype”. But keep in mind, the show dog
prototype is still a dog instance.

Now that we’ve got a ShowDog constructor and we’ve set up the show dog prototype object,
we need to go back and fill in some details. We’ll take a closer look at the constructor, and
we’ve also got some properties and methods to add to the prototype so our show dogs have
the additional show dog behavior we want them to have.

This constructor takes
everything we need to be a
dog (name, breed, weight), and
to be a show dog (a handler).

We could have used our dog instance created on
the previous page, but we can skip the variable
assignment and just assign the new dog straight
to the prototype property instead.

species: "Canine"

Dog Prototype

bark()
run()
wag()

Dog

species: "Canine"

Dog Prototype

bark()
run()
wag()

ShowDog Prototype

We’re changing the name
in our diagram from Dog
to ShowDog Prototype.

you are here 4 597

using prototypes

We’ve got the show dog prototype set up (which at the moment is just an empty
instance of dog). Now, it’s time to fill it with properties and behaviors that will make
it look more like a show dog prototype.

Here are some properties that are specific to show dogs we can add:

species: "Canine"

Dog Prototype

bark()
run()
wag()

league: “Webville”

ShowDog Prototype

stack()
bait()
gait()
groom()

Now it’s time to fill in the prototype

function ShowDog(name, breed, weight, handler) {

 this.name = name;

 this.breed = breed;
 this.weight = weight;

 this.handler = handler;

}

ShowDog.prototype = new Dog();

Showdog.prototype.league = "Webville";

ShowDog.prototype.stack = function() {
 console.log("Stack");
};

ShowDog.prototype.bait = function() {
 console.log("Bait");
};

ShowDog.prototype.gait = function(kind) {
 console.log(kind + "ing");
};

ShowDog.prototype.groom = function() {
 console.log("Groom");
};

We say that our show dog prototype “extends” the dog prototype. It inherits properties from the dog prototype and extends it with new ones.

Here are all the methods
we need for show dogs.
We’ll just keep them
simple for now.

All our show dogs are in
the Webville league, so
we'll add this property to
the prototype.

Remember, the ShowDog constructor looks a lot like
the Dog constructor. A show dog needs a name, breed,
weight, plus one extra property, a handler (the person
who handles the show dog). These will end up being
defined in the show dog instance.

With these additions our show dog prototype is starting to look like a show dog.
Let’s update our object diagram again, and then it’s probably time to do a big
test run of the show dogs. We’re guessing Webville Kennel is going to be pretty
excited to see these in action.

We’re adding all these properties to the show dog prototype so all show dogs inherit them. Remember that methods are
properties, so show dogs will inherit them too.

This is where
we’re taking the
dog instance
that is acting
as the show dog
prototype, and
we’re adding new
properties.

598 Chapter 13

creating a show dog

function ShowDog(name, breed, weight, handler) {

 this.name = name;

 this.breed = breed;
 this.weight = weight;

 this.handler = handler;

}

ShowDog.prototype = new Dog();

Showdog.prototype.league = "Webville";

ShowDog.prototype.stack = function() {
 console.log("Stack");
};

ShowDog.prototype.bait = function() {
 console.log("Bait");
};

ShowDog.prototype.gait = function(kind) {
 console.log(kind + "ing");
};

ShowDog.prototype.groom = function() {
 console.log("Groom");
};

var scotty = new ShowDog("Scotty", "Scottish Terrier", 15, "Cookie");

Creating a show dog instance
Now we just have one more thing to do: create an instance of
ShowDog. This instance will inherit show dog properties and
methods from our show dog prototype, and because our show dog
prototype is an instance of Dog, the show dog will also inherit all
its doggy behavior and properties from the dog prototype, so he’ll
be able to bark and run and wag with the rest of the dogs.

Here’s all the code so far, and the code to create the instance:

And here’s our show dog instance. It
inherits from the show dog prototype,
which inherits from the dog prototype.
Just what we wanted. If you go back
and look at page 592, you’ll see we’ve
completed the prototype chain.

Here’s our new show dog, scotty.

species: "Canine"

Dog Prototype

bark()
run()
wag()

ShowDog Prototype

stack()
bait()
gait()
groom()

league: “Webville”

name: “Spot”
breed: “Chihuahua”
weight: 10

Dog

name: “Fluffy”
breed: “Poodle”
weight: 30

Dog

name: “Fido”
breed: “Mixed”
weight: 38

Dog

name: “Scotty”
breed: “Scottish Terrier”

weight: 15
handler: “Cookie”

ShowDog

you are here 4 599

using prototypes

Test drive the show dog

scotty.stack();

scotty.bark();

console.log(scotty.league);

console.log(scotty.species);

Take all your the code on the previous page, and add to it the quality
assurance code below, just to give scotty a good testing. Hey, and
while you’re at it, add a few dogs of your own and test them: JavaScript console

Stack
Scotty says Yip!
Webville
Canine

v Your turn. Add a SpaceRobot line of robots to the ObjectsRUs line of robots. These robots should
of course be able to do everything that robots can do, plus some extra behavior for space robots.
We’ve started the code below, so finish it up and then test it. Check your answer at the end of the
chapter before moving on.

function SpaceRobot(name, year, owner, homePlanet) {

}

SpaceRobot.prototype = new ____________;

___________________.speak = function() {
 alert(this.name + " says Sir, If I may venture an opinion...");
};

___________________.pilot = function() {
 alert(this.name + " says Thrusters? Are they important?");
};

var c3po = new SpaceRobot("C3PO", 1977, "Luke Skywalker", "Tatooine");
c3po.speak();
c3po.pilot();
console.log(c3po.name + " was made by " + c3po.maker);

var simon = new SpaceRobot("Simon", 2009, "Carla Diana", "Earth");
simon.makeCoffee();
simon.blinkLights();
simon.speak();

Here’s what we got.

600 Chapter 13

exercise for testing object constructors

Let’s take a closer look at all these dogs we’re creating. We’ve tested Fido
before and we know he’s truly a dog. But let’s see if he’s a show dog as
well (we don’t think he should be). And what about Scotty? We figure he
should be a show dog for sure, but is he a dog too? We're not sure. And
we’ll test Fido and Scotty’s constructors while we’re at it...

var fido = new Dog("Fido", "Mixed", 38);

if (fido instanceof Dog) {

 console.log("Fido is a Dog");

}

if (fido instanceof ShowDog) {

 console.log("Fido is a ShowDog");

}

var scotty = new ShowDog("Scotty", "Scottish Terrier", 15, "Cookie");

if (scotty instanceof Dog) {

 console.log("Scotty is a Dog");

}

if (scotty instanceof ShowDog) {

 console.log("Scotty is a ShowDog");

}

console.log("Fido constructor is " + fido.constructor);

console.log("Scotty constructor is " + scotty.constructor);

Run this code and provide
your output below.

Your output goes here:

You'll find our output on
the next page.

JavaScript console

you are here 4 601

using prototypes

Examining the exercise results
Here’s the output from that last test run:

JavaScript console
Fido is a Dog
Scotty is a Dog
Scotty is a ShowDog
Fido constructor is function Dog...
Scotty constructor is function Dog...

Fido is a dog, which we
expected, and we don’t see
that Fido is a show dog, so
he must not be one. That
makes sense too.

And Scotty is both a dog
and a show dog, which
makes sense. But how does
instanceof know that?

Hmm, this looks weird. Both
Fido and Scotty show they were
created by the dog constructor.
But we used the show dog
constructor to create Scotty...

Let’s think about these results for a minute. First, Fido is apparently just a dog and
not a show dog—actually, that is totally what we thought would happen; after all,
Fido was created with the Dog constructor, which has nothing to do with show dogs.

Next, Scotty is a dog and a show dog. That makes sense too, but how did this
happen? Well, instanceof doesn’t just look at what kind of object you are, it also
takes into account all the objects you inherit from. So, Scotty was created as a show
dog, but a show dog inherits from a dog, so Scotty is a dog too.

Next up, Fido has a Dog constuctor, and that makes sense, because that is how we
created him.

And finally, Scotty has a Dog constructor too. That doesn’t make sense, because
Scotty was created by the ShowDog constructor. What’s going on here? Well, first
let’s think about where this constructor comes from: we’re looking at the
scotty.constructor property, and this is something we’ve never setup. So we
must be inheriting it from the dog prototype (again, because we haven’t explicitly set
it up for a show dog).

So why is this happening? Honestly, it’s a loose end that we need to cleanup. You see,
if we don’t take care of setting the show dog prototype’s constructor property, no
one else will. Now, keep in mind everything is working fine without it; but not setting
it could lead to confusion if you or someone else tries to use
scotty.constructor expecting to get show dog.

But don’t worry, we’ll fix it.

JavaScript console
Fido is a Dog
Scotty is a Dog
Scotty is a ShowDog
Fido constructor is function Dog...
Scotty constructor is function Dog...

JavaScript console
Fido is a Dog
Scotty is a Dog
Scotty is a ShowDog
Fido constructor is function Dog...
Scotty constructor is function Dog...

JavaScript console
Fido is a Dog
Scotty is a Dog
Scotty is a ShowDog
Fido constructor is function Dog...
Scotty constructor is function Dog...

JavaScript console
Fido is a Dog
Scotty is a Dog
Scotty is a ShowDog
Fido constructor is function Dog...
Scotty constructor is function Dog...

602 Chapter 13

cleaning up the code

A final cleanup of show dogs
Our code is just about ready to ship to Webville Kennel, but we need to
make one final pass to polish it. There are two small issues to clean up.

The first, we’ve already seen: that instances of ShowDog don’t have
their constructor property set correctly. They’re inheriting the Dog
constructor property. Now, just to be clear, all our code works fine as
is, but setting the right constructor on our objects is a best practice,
and some day another developer may end up with your code and be
confused when they examine a show dog object.

To fix the constructor property, we need to make sure it is set up
correctly in the show dog prototype. That way, when a show dog is
constructed it will inherit the right constructor property. Here’s how we
do that:

function ShowDog(name, breed, weight, handler) {
 this.name = name;
 this.breed = breed;
 this.weight = weight;
 this.handler = handler;

}

ShowDog.prototype = new Dog();

ShowDog.prototype.constructor = ShowDog;

Here we're taking the show dog prototype and
explicitly setting its constructor property to
the ShowDog constructor.

That's all you need to do. When we check Scotty
again he should have the correct constructor
property, as should all other show dogs.

Remember this is a best practice, without it
your code still works as expected.

Quickly rerun the tests from the previous exercise and make sure your
Scotty show dog instance has the correct constructor.

JavaScript console
Fido is a Dog
Scotty is a Dog
Scotty is a ShowDog
Fido constructor is function Dog...
Scotty constructor is function ShowDog...

Here's what we got. Note that Scotty's
constructor is now ShowDog.

Note that we didn’t have to do this for the dog
prototype because it came with the constructor
property set up correctly by default.

you are here 4 603

using prototypes

function ShowDog(name, breed, weight, handler) {
 this.name = name;
 this.breed = breed;
 this.weight = weight;
 this.handler = handler;

}

If you didn't notice, this code
is replicated from the Dog
constructor.

As you’ve seen in this book, anytime we see duplicated code, the
warning bells go off. In this case, the Dog constructor already knows
how to do this work, so why not let the constructor do it? Further,
while our example has simple code, at times constructors can have
complex code to compute initial values for properties, and we don’t
want to start reproducing code everytime we create a new constructor
that inherits from another prototype. So let’s fix this. We’ll rewrite the
code first, and step you through it:

Dog.call(this, name, breed, weight);

As you can see we’ve replaced the redundant code in the ShowDog constructor
with a call to a method named Dog.call. Here’s how it works: call is a built-
in method that you can use on any function (and remember Dog is a function).
Dog.call invokes the Dog function and passes it the object to use as this,
along with all the arguments for the Dog function. Let’s break this down:

Dog is the
function we’re
going to call.

Whatever is in this is us
ed

for this in the body o
f

the Dog function. The rest of the
arguments are
just passed to
Dog like normal.

A little more cleanup
There’s another place we could use some cleanup: in the ShowDog constructor
code. Let’s look again at the constructor:

function ShowDog(name, breed, weight, handler) {

 Dog.call(this, name, breed, weight);

 this.handler = handler;

}

This bit of code is going to reuse the
Dog constructor code to process the
name, breed, and weight.

But we still need to handle the handler in this code because the Dog constructor doesn't know anything about it.

With this code we're
calling the Dog
constructor function
but telling it to use our
ShowDog instance as this,
and so the Dog function
will set the name, breed
and weight properties in
our ShowDog object.

This idea of eliminating duplicate
code even has an acronym: DRY.
“Don’t Repeat Yourself” as all the

cool coders say.

call is the method of Dog we’re calling. The call
method will cause the Dog function to be called.
We use the call method instead of just calling Dog
directly so we can control what the value of this is.

604 Chapter 13

using the call method

function Dog(name, breed, weight) {

 this.name = name;

 this.breed = breed;

 this.weight = weight;

}

function ShowDog(name, breed, weight, handler) {

 Dog.call(this, name, breed, weight);

 this.handler = handler;

}

Stepping through Dog.call
Using Dog.call to call Dog is a bit tricky to wrap your head around so
we’ll walk through it again, starting with the reworked code. We’re going to rely on

the code from the Dog
constructor to handle
assigning the name, breed,
and weight properties.

But Dog doesn’t know anything about handler, so we have to take care of that in ShowDog.

Here’s how to think about how this works. First, we call ShowDog with
the new operator. Remember that the new operator makes a new, empty
object, and assigns it to the variable this in the body of ShowDog.

function ShowDog(name, breed, weight, handler) {

 Dog.call(this, name, breed, weight);

 this.handler = handler;

}

var scotty = new ShowDog("Scotty", "Scottish Terrier", 15, "Cookie");

Then, we execute the body of the ShowDog constructor function. The first
thing we do is call Dog, using the call method. That calls Dog, passing in
this, and the name, breed, and weight parameters as arguments.

The this object
created by new for
ShowDog gets used
as this in the body
of Dog.

Once the Dog function completes (and remember, it is not
going to return anything because we didn’t call it with new),
we complete the code in ShowDog, assigning the value of
the parameter handler to the this.handler property.
Then, because we used new to call ShowDog, an instance of
ShowDog is returned, complete with its name, breed, weight,
and handler.

These three properties
are assigned to this b

y
the code in the Dog
function.

We execute the
body of Dog as
normal, except that
this is a ShowDog,
not a Dog object.

this

name:
breed:
weight:
handler:

ShowDog

name: “Scotty”
breed: “Scottish Terrier”

weight: 15
handler: “Cookie”

ShowDog

This property is assigned
to this by the code in
the ShowDog function.

you are here 4 605

using prototypes

function ShowDog(name, breed, weight, handler) {

 Dog.call(this, name, breed, weight);

 this.handler = handler;

}

ShowDog.prototype = new Dog();

ShowDog.prototype.constructor = ShowDog;

ShowDog.prototype.league = "Webville";

ShowDog.prototype.stack = function() {

 console.log("Stack");

};

ShowDog.prototype.bait = function() {
 console.log("Bait");

};

ShowDog.prototype.gait = function(kind) {

 console.log(kind + "ing");

};

ShowDog.prototype.groom = function() {

 console.log("Groom");

};

var fido = new Dog("Fido", "Mixed", 38);

var fluffy = new Dog("Fluffy", "Poodle", 30);

var spot = new Dog("Spot", "Chihuahua", 10);

var scotty = new ShowDog("Scotty", "Scottish Terrier", 15, "Cookie");

var beatrice = new ShowDog("Beatrice", "Pomeranian", 5, "Hamilton");

fido.bark();

fluffy.bark();

spot.bark();

scotty.bark();

beatrice.bark();

scotty.gait("Walk");

beatrice.groom();

The final test drive

JavaScript console
Fido says Woof!
Fluffy says Woof!
Spot says Yip!
Scotty says Yip!
Beatrice says Yip!
Walking
Groom

Well done, you’ve created a fantastic design that we’re sure
Webville Kennel is going to love. Take all your dogs for one
final test run so they can show off all their doggy capabilities.

Create some dogs and
some show dogs.

Put them through their paces and make sure they’re all doing the right thing.

Webville Kennel is
going to love this!

We've brought all the ShowDog code
together here. Add this to the file
with your Dog code to test it.

We've added some test code below.

606 Chapter 13

questions about prototypes

Q: When we made the dog instance
we used for the show dog prototype,
we called the Dog constructor with no
arguments. Why?

A: Because all we need from that dog
instance is the fact that it inherits from the
dog prototype. That dog instance isn’t a
specific dog (like Fido or Fluffy); it’s simply
a generic dog instance that inherits from
the dog prototype.

Also, all the dogs that inherit from the
show dog prototype define their own
name, breed, and weight. So even if that
dog instance did have values for those
properties, we’d never see them because
the show dog instances will always
override them.

Q: So what happens to those
properties in the dog instance we use
for the show dog prototype?

A: They never get assigned values, so
they are all undefined.

Q: If we never set the ShowDog’s
prototype property to a dog instance,
what happens?

A: Your show dogs will work fine, but
they won’t inherit any behavior from the
dog prototype. That means they won’t
be able to bark, run, or wag, nor will they
have the “Canine” species property. Give
it a try yourself. Comment out the line of
code where we set ShowDog.prototype to
new Dog() and then try making Scotty bark.
What happens?

Q: Could I create an object literal
and use that as the prototype?

A: Yes. You can use any object as
the prototype for ShowDog. Of course, if
you do that, your show dogs won’t inherit
anything from the dog prototype. They’ll
inherit the properties and methods you put
in your object literal instead.

Q: I accidentally put the line of code
to assign ShowDog.prototype to the
instance of dog below where I created
my scotty instance, and my code didn’t
work. Why?

A: Because when you create scotty
(an instance of ShowDog), it gets the
prototype that’s assigned to
ShowDog.prototype at the time when you
create it. So if you don’t assign the dog
instance object to the prototype until after
you create scotty, then scotty will have a
different object as its prototype (the object
you get by default with the ShowDog
constructor). And that object doesn’t have
any of the Dog prototype’s properties. You
should assign the show dog prototype first
thing after you create the constructor, but
before you add anything to the prototype,
or create any instances of ShowDog.

Q: If I change a property in the dog
prototype, like changing species from

“Canine” to “Feline”, will that affect the
show dogs I’ve created?

A: Yes, anything you change in the
prototype will affect any instances that
inherit from that prototype in the chain, no
matter how many links you have in your
chain.

Q: Is there a limit to how long my
prototype chains can be?

A: Theoretically, no, but in practice,
maybe. The longer your prototype chain,
the more work it is to resolve a method
or property. That said, runtime systems
are often quite good at optimizing these
lookups.

In general, you’re not going to need
designs that require that many levels of
inheritance. If you do, you’ll probably want
to take another look at your design.

Q: What if I have another category
of dogs, like competition dogs. Can I
create a competition dog prototype that
inherits from the same dog prototype
as the show dog prototype does?

A: Yes, you can. You’ll need to create
a separate dog instance to act as your
competition dog prototype, but once you’ve
done that you’ll be good to go. Just follow
the same steps we used here to create the
show dog prototype.

species: "Canine"

Dog Prototype

bark()
run()
wag()

ShowDog Prototype

stack()
bait()
gait()
groom()

league: “Webville”

name: “Scotty”
breed: “Scottish Terrier”

weight: 15
handler: “Cookie”

ShowDog

Competition Prototype

crossDrive()
awayDrive()
shedding()
singling()

league: “Objectville”

name: “Ci”
breed: “Border Collie”

weight: 28
handler: “Mark”

CompetitionDog

you are here 4 607

using prototypes

Object

toString()
hasOwnProperty()
// and more

The chain doesn’t end at dog

species: "Canine"

Dog Prototype

bark()
run()
wag()

name: “Scotty”
breed: “Scottish Terrier”

weight: 15
handler: “Cookie”

ShowDog

league: “Webville”

ShowDog Prototype

stack()
bait()
gait()
groom()

You’ve already seen a couple of prototype chains—we
have the original dog prototype that our dog objects
inherit from, and we have the more specialized show dog
instances that inherit first from the show dog prototype,
and the dog prototype.

But in both cases, is dog the end of the chain? Actually it
isn’t, because dog has its own prototype, Object.

In fact, every prototype chain you ever create will end
in Object. That’s because the default prototype for any
instance you create (assuming you don’t change it) is
Object.

The prototype chains
end with Object.

What is Object?

Think of Object like the primordial object. It’s the object
that all objects initially inherit from. And Object implements
a few key methods that are a core part of the JavaScript
object system. Many of these you won’t use on a daily basis,
but there are some methods you’ll see commonly used.

One of those you’ve already seen in this chapter:
hasOwnProperty, which is inherited by every object
(again, because every object ultimately inherits from Object).
Remember, hasOwnProperty is the method we used earlier
to determine if a property is in an object instance or in one
of its prototypes.

Another method inherited from Object is the toString
method, which is commonly overridden by instances. This
method returns a String representation of any object. We’ll
see in a bit how we can override this method to provide a
more accurate description of our own objects.

Object is the object
from which all objects
inherit.

Object as a prototype

So whether you realized it or not, every object you’ve ever
created has had a prototype, and it’s been Object. You can
set an object’s prototype to another kind of object, like
we did with the show dog prototype, but ultimately, all
prototype chains eventually lead to Object.

608 Chapter 13

overriding the tostring method

If you’re inheriting from a built-in object you can override methods in
those objects. One common example is the toString method of Object.
All objects inherit from Object, so all objects can use the toString
method to get a simple string representation of any object. For instance,
you might use it with console.log to display your object in the console:

Using inheritance to your advantage...

function Robot(name, year, owner) {
 this.name = name;
 this.year = year;
 this.owner = owner;
}

var toy = new Robot("Toy", 2013, "Avary");

console.log(toy.toString());

As you can see, the toString method doesn’t do a very good job of
converting the toy robot into a string. So we can override the toString
method and write one that creates a string specifically for Robot objects:

function Robot(name, year, owner) {
 // same code here
}

Robot.prototype.toString = function() {
 return this.name + " Robot belonging to " + this.owner;
};

var toy = new Robot("Toy", 2013, "Avary");

console.log(toy.toString());

JavaScript console
Toy Robot belonging to Avary

The toString method we’re
inheriting from Object
doesn’t do a very good job.

Much better! Now we’re using
our own toString method.

Notice that the toString method can be invoked even if you’re
not calling it directly yourself. For instance, if you use the +
operator to concatenate a string and an object, JavaScript will
use the toString method to convert your object to a string
before concatenating it with the other string.

console.log("Robot is: " + toy);

The toy object will get converted to a string using toString before
it's

concatenated. If toy has overridden toString, it w
ill use that method.

by overriding built-in behavior

Toy? This Robot’s
running an Arduino stack

and even controllable with
JavaScript!

JavaScript console
[Object object]

you are here 4 609

using prototypes

DANGER ZONE
Once you start overriding properties and methods, it’s easy to get a
little carried away. It’s especially important to be careful when overriding
properties and methods in built-in objects, because you don’t want to
change the behavior of other code that might rely on these properties to
do certain things.

So if you’re thinking of overriding properties in Object, read this Safety
Guide first. Otherwise, you might end up blowing up your code in
unexpected ways. (Translation: you’ll have bugs that are really hard to
track down.)

Do not override
Here are the properties in Object you don’t want to override:

OKAY to Override
Here are the properties in Object that you can override now
that you know your way around prototypes, and know how to
override safely:

constructor

hasOwnProperty

isPrototypeOf

propertyIsEnumerable

toString

toLocaleString

valueOf

The constructor property points to the
constructor function connected to the pro

totype.

isPrototypeOf is a method you can use to find out
if an object is a prototype of another object.

You know what the hasOwnProperty method does.

The propertyIsEnumerable method checks to
see if a property can be accessed by iterating
through all the properties of an object.

toLocaleString is a method, like toString, that converts an obje
ct

to a string. This method is designed to be overridden to prov
ide a

localized string (say, for your country/lang
uage) about an object.

valueOf is another method designed to be overridden. By
default it just gives you the object you call it on. But you can
override that to return another value instead if you want.

610 Chapter 13

extending built-in behavior

You already know that by adding methods to a prototype, you can add new
functionality to all instances of that prototype. This applies not only to your
own objects, but also to built-in objects.

Take the String object for instance—you’ve used String methods like
substring in your code, but what if you want to add your own method
so that any instance of String could make use of it? We can use the same
technique of extending objects through the prototype on Strings too.

Let’s say we want to extend the String prototype with a method, cliche, that
returns true if the string contains a known cliché. Here’s how we’d do that:

Remember that while we
usually think of strings as
primitive types, they also have
an object form. JavaScript
takes care of converting a
string to an object whenever
necessary.

String.prototype.cliche = function() {

 var cliche = ["lock and load","touch base", "open the kimono"];

 for (var i = 0; i < cliche.length; i++) {

 var index = this.indexOf(cliche[i]);

 if (index >= 0) {

 return true;

 }

 }

 return false;

};

Now let’s write some code to test the method:

var sentences = ["I'll send my car around to pick you up.",

 "Let's touch base in the morning and see where we are.",

 "We don't want to open the kimono, we just want to inform them."];

for (var i = 0; i < sentences.length; i++) {

 var phrase = sentences[i];

 if (phrase.cliche()) {

 console.log("CLICHE ALERT: " + phrase);

 }

}

Here we're adding a method,
cliche, to the String prototype.

We define offending
phrases to look for.

And then we use the String's indexOf
function to see if the string matches
any of the clichés. If it does we
immediately return true.

Note that this is the string on
which we call the method cliche.

To test let's create some sentences,
including a couple that use clichés.

Each sentence is a string, so
we can call its cliche method.

If true is returned, we know
we have a cliché in the string.

Notice that we’re not creating a string using
the String constructor and new. JavaScript is
converting each string to a String object behind
the scenes for us, when we call the cliche method.

Using inheritance to your advantage...
by extending a built-in object

you are here 4 611

using prototypes

v

Test driving the cliche machine‘
Get the code into a HTML file, open your browser and load it up.
Check your console and you should see this output:

JavaScript console
CLICHE ALERT: Let's touch base in the morning and see where we are.
CLICHE ALERT: We don't want to open the kimono, we just want to inform them.

Works great. If only we could
convince Corporate America
to install this code!

Your turn. Write a method, palindrome, that returns true if a string reads the same
forwards and backwards. (Just one word, don’t worry about palindrome phrases.) Add the
method to the String.prototype and test. Check your answer at the end of the chapter.

 Be careful when you extend built-in

objects like String with your own

methods.

Make sure the name you choose for your method

doesn’t conflict with an existing method in the

object. And if you link to other code, be aware of other custom

extensions that code may have (and again, watch for name

clashes). And finally, some built-in objects aren’t designed to

be extended (like Array). So do your homework before you

start adding methods to built-in objects.

612 Chapter 13

everything is an object

Grand Unified Theory of Everything
JavaScript

Congratulations. You’ve taken on the task of learning an entirely
new programming language (maybe your first language) and you’ve
done it. Assuming you’ve made it this far, you now know more
JavaScript than pretty much everyone.

More seriously, if you’ve made it this far in the book, you are well on
your way to becoming a JavaScript expert. Now all you need is more
experience designing and coding web applications (or any kind of
JavaScript application for that matter).

We're using the logic that about 5.9
billion people don't know JavaScript at all,
and so those who do are pretty much a
rounding error, which means you know more
JavaScript than just about anyone.

Better living through objects
When you’re learning a complex topic like JavaScript, it’s hard to see
the forest for the trees. But, once you understand most of JavaScript, it’s
easier to step back and check out the forest.

When you’re learning JavaScript, you learn about pieces of it at a time: you
learn about primitives (that can, at any moment, be used like an object),
arrays (which kinda act like objects at times), functions (which, oddly, have
properties and methods like objects), constructors (which feel like part
function, part object) and well… objects themselves. It all seems rather
complex.

Well, with the knowledge you have now, you can sit back, relax, take a
cleansing breath, and meditate on the mantra “everything is an object.”

Because you see, everything is an object—oh, sure we have a few primitives,
like booleans, numbers and strings, but we already know that we can treat
those as objects anytime we need to. We have some built-in types too, like
Date, Math and RegEx, but those are just objects too. Even arrays are
objects, and as you saw, the only reason they look different is because
JavaScript provides some nice “syntactic sugar” we can use to make creating
and accessing objects easier. And of course we have objects themselves,
with the simplicity of object literals and the power of the prototypal object
system.

But what about functions? Are they really objects? Let’s find out:

Everything is an
object...Everything is
an object...Everything

is an object...

function meditate() {

 console.log("Everything is an object...");

}

alert(meditate instanceof Object);

you are here 4 613

using prototypes

So it’s true: functions are just objects. But, really, this shouldn’t
be a big surprise at this point. After all we can assign functions to
variables (like objects), pass them as arguments (like objects), return
them from functions (like objects), and we’ve even seen they have
properties, like this one:

It's true! Functions are objects too.

Dog.constructor

Remember this
is a function.

And this is a
property.

And there’s nothing stopping you from adding your own properties to
a function should that come in handy. And, by the way, just to bring it
all full circle, have you considered that a method is just a property in
an object that is set to an anonymous function expression?

Putting it all together

What’s next?
Now that you’ve got all the fundamentals down, it’s time
to take it all further. Now you’re ready to really put your
experience to use with the browser and its programming
interfaces. You can do that by picking up Head First
HTML5 Programming, which will take you through how to
add geolocation, canvas drawing capabilities, local storage,
web workers and more into your applications. But before
you put this book down, be sure to read the appendix for
a great list of other topics to explore.

This is a rapidly evolving topic, so before you go looking for
Head First HTML5 Programming, hit
http://wickedlysmart.com/javascript for our latest
recommendations and any updates and revisions for this book.

Be sure to visit http://wickedlysmart.
com/javascript for follow-up materials
for this book and, as your next mission,
should you accept it...

A lot of JavaScript’s power and flexibility comes from the interplay between
how we use functions and objects, and the fact that we can treat them as
first class values. If you think about the powerful programming concepts
we’ve studied—constructors, closures, creating objects with behavior that
we can reuse and extend, parameterizing the behavior of functions, and so
on—all these techniques have relied on your understanding of advanced
objects and functions.

Well, now you’re in a position to take this all even further…

http://wickedlysmart.com/javascript

614 Chapter 13

chapter summary

 � JavaScript’s object system uses
prototypal inheritance.

 � When you create an instance of an object
from a constructor, the instance has its
own customized properties and a copy of
the methods in the constructor.

 � If you add properties to a constructor’s
prototype, all instances created from that
constructor inherit those properties.

 � Putting properties in a prototype can
reduce runtime code duplication in objects.

 � To override properties in the prototype,
simply add the property to an instance.

 � A constructor function comes with a
default prototype that you can access
with the function’s prototype property.

 � You can assign your own object to the
prototype property of a constructor
function.

 � If you use your own prototype object,
make sure you set the constructor function
correctly to the constructor property for
consistency.

 � If you add properties to a prototype after
you’ve created instances that inherit from
it, all the instances will immediately inherit
the new properties.

 � Use the hasOwnProperty method on an
instance to find out if a property is defined
in the instance.

 � The method call can be used to invoke a
function and specify the object to be used
as this in the body of the function.

 � Object is the object that all prototypes and
instances ultimately inherit from.

 � Object has properties and methods
that all objects inherit, like toString and
hasOwnProperty.

 � You can override or add properties to built-
in objects like Object and String, but take
care when doing so as your changes can
have far-ranging effects.

 � In JavaScript, almost everything is an
object, including functions, arrays, many
built-in objects, and all the custom objects
you make yourself.

Congratulations
from all of us for
finishing the book!

You did it! It’s the
end of the book! Ey Ey Matey, well done! Nice! We couldn’t have done

it without you!
Woohoo! You nailed it! Right on! Nice Job! You’re ready to

take on some real
coding now!

Totally awesome job!

you are here 4 615

using prototypes

Code Magnets Solution
We had an object diagram on the fridge, and then someone came and messed it up. Can you
help put it back together? To reassemble it, we need two instances of the robot prototype.
One is Robby, created in 1956, owned by Dr. Morbius, has an on/off switch and runs to
Starbucks for coffee. We’ve also got Rosie, created in 1962, who cleans house and is owned by
George Jetson. Good luck (oh, and there might be some extra magnets below)!

Here’s our solution:

maker: "ObjectsRUs"

Robot Prototype

speak()
makeCoffee()
blinkLights()

function speak() {
 // code to speak
}

function
makeCoffee() {
 // starbucks
}

function
makeCoffee() {
 // code 4 coffee
}

function
cleanHouse() {
 // code 4 clean
}

Here’s the
prototype your
robots can
inherit from.

name: "Robby"

Robot

owner: "Dr. Morbius"

year: 1956

makeCoffee()

onOffSwitch: true

name: "Rosie"

Robot

year: 1962

owner: "George Jetson"

cleanHouse()

function
blinkLights() {
 // code 4 lights
}

616 Chapter 13

exercise solutions

v

function Robot(name, year, owner) {

 this.name = name;

 this.year = year;

 this.owner = owner;

}

Robot.prototype.maker = "ObjectsRUs";

Robot.prototype.speak = function() {

 alert("Warning warning!!");

};

Robot.prototype.makeCoffee = function() {

 alert("Making coffee");

};

Robot.prototype.blinkLights = function() {

 alert("Blink blink!");

};

var robby = new Robot("Robby", 1956, "Dr. Morbius");

var rosie = new Robot("Rosie", 1962, "George Jetson");

robby.onOffSwitch = true;

robby.makeCoffee = function() {

 alert("Fetching a coffee from Starbucks.");

};

rosie.cleanHouse = function() {

 alert("Cleaning! Spic and Span soon...");

};

console.log(robby.name + " was made by " + robby.maker +

 " in " + robby.year + " and is owned by " + robby.owner);

robby.makeCoffee();

robby.blinkLights();

console.log(rosie.name + " was made by " + rosie.maker +

 " in " + rosie.year + " and is owned by " + rosie.owner);

rosie.cleanHouse();

Remember our object diagram for the Robby and Rosie robots? We’re going to implement that
now. We’ve already written a Robot constructor for you along with some test code. Your job is to
set up the robot prototype and to implement the two robots. Make sure you run them through the
test code. Here’s our solution.

Here, we’re adding a custom
property to Robby, as well as a
custom method for making coffee
(by going to Starbucks).

Here we’re setting up the prototype
with a maker property...

Here’s the basic Robot
constructor.

We create our robots,
Robby and Rosie here.

...and three methods that are
shared by all robots.

And Rosie also gets a custom method

to clean the house (why do the girl

robots have to clean?)

JavaScript console
Robby was made by ObjectsRUs in 1956
and is owned by Dr. Morbius
Rosie was made by ObjectsRUs in 1962
and is owned by George Jetson

Here’s our output
(plus some alerts
we're not showing).

you are here 4 617

using prototypes

v Robby and Rosie are being used in a Robot game. You’ll find the code for them below. In this
game, whenever a player reaches level 42, a new robot capability is unlocked: the laser beam
capability. Finish the code below so that at level 42 both Robby and Rosie get their laser beams.
Here’s our solution.

function Game() {
 this.level = 0;
}

Game.prototype.play = function() {
 // player plays game here
 this.level++;
 console.log("Welcome to level " + this.level);
 this.unlock();
};

Game.prototype.unlock = function() {
 if (this.level === 42) {
 Robot.prototype.deployLaser = function () {
 console.log(this.name + " is blasting you with laser beams.");
 }
 }
};

function Robot(name, year, owner) {
 this.name = name;
 this.year = year;
 this.owner = owner;
}

var game = new Game();
var robby = new Robot("Robby", 1956, "Dr. Morbius");
var rosie = new Robot("Rosie", 1962, "George Jetson");

while (game.level < 42) {
 game.play();
}

robby.deployLaser();
rosie.deployLaser();

A sample of our
output. When you
finish your code, give
it a play and see which
robot wins and gets to
blast its laser beams!

JavaScript console
Welcome to level 1
Welcome to level 2
Welcome to level 3
 ...
Welcome to level 41
Welcome to level 42
Robby is blasting you with
laser beams.
Rosie is blasting you with
laser beams.

Here’s the trick to this game: when you
reach level 42, a new method is added
to the prototype. That means all robots
inherit the ability to deploy lasers!

We call unlock each time we play the game but no
power is unlocked until the level reaches 42.

618 Chapter 13

exercise solutions

v We’ve added a new capability to our robots, Robby and Rosie: they can now report when they
have an error through the reportError method. Trace the code below, paying particular attention
to where this method gets its error information, and to whether it’s coming from the prototype of
the robot instance.

Here’s our solution.

function Robot(name, year, owner) {

 this.name = name;

 this.year = year;

 this.owner = owner;

}

Robot.prototype.maker = "ObjectsRUs";

Robot.prototype.errorMessage = "All systems go.";

Robot.prototype.reportError = function() {

 console.log(this.name + " says " + this.errorMessage);

};

Robot.prototype.spillWater = function() {

 this.errorMessage = "I appear to have a short circuit!";

};

var robby = new Robot("Robby", 1956, "Dr. Morbius");

var rosie = new Robot("Rosie", 1962, "George Jetson");

rosie.reportError();

robby.reportError();

robby.spillWater();

rosie.reportError();

robby.reportError();

console.log(robby.hasOwnProperty("errorMessage"));

console.log(rosie.hasOwnProperty("errorMessage"));

true
false

We call the spillWater method on Robby, so
Robby gets his own errorMessage property,
which overrides the property in the prototype.

But we never call spillWater on Rosie, so she
inherits the property in the prototype.

The spillWater method assigns a
new value to this.errorMessage,
which will override the
property in the prototype
in any robot that calls this
method.

The reportError method
only uses the value of
errorMessage, so it doesn’t
override the property.

you are here 4 619

using prototypes

Code Magnets Solution
We had another object diagram on the fridge, and then someone came and messed it up.
Again!! Can you help put it back together? To reassemble it we need a new line of Space Robots
that inherit properties from Robots. These new Space Robots override the Robot’s speaking
functionality, and extend Robots with piloting functionality and a new property, homePlanet.
Here’s our solution.

function speak() {
 // code to speak
}

maker: "ObjectsRUs"

Robot Prototype

speak()
makeCoffee()
blinkLights()

function
makeCoffee() {
 // code 4 coffee
}

function
blinklights() {
 // code 4 lights
}

name: "Robby"
year: 1956
owner: "Dr. Morbius"

Robot

name: "Rosie"
year: 1962
owner: "George Jetson"

Robot

name: "C3PO"
year: 1977
owner: "L. Skywalker"
homePlanet: "Tatooine"

Space Robot
name: "Simon"
year: 2009
owner: "Carla Diana"
homePlanet: "Earth"

Space Robot

Space Robot Prototype

speak()
pilot()

function speak() {
 // code to speak
 // in space
}

function
pilot() {
 // code to pilot
 // spaceship
}

The Space Robot
prototype inherit

s (and

extends) the Robot

prototype. We add
two methods to this

prototype, speak
and

pilot, so all robot
s will

inherit these methods.

And the Space Robot instances inherit from the Space Robot prototype. They inherit the speak and pilot methods, and we add a custom homePlanet property to each instance.

620 Chapter 13

exercise solutions

v Your turn. Add a SpaceRobot line of robots to the ObjectsRUs line of robots. These robots should
of course be able to do everything that robots can do, plus some extra behavior for space robots.
We’ve started the code below, so finish it up and then test it. Here’s our solution.

function SpaceRobot(name, year, owner, homePlanet) {

 this.name = name;

 this.year = year;

 this.owner = owner;

 this.homePlanet = homePlanet;

}

SpaceRobot.prototype = new Robot();

SpaceRobot.prototype.speak = function() {

 alert(this.name + " says Sir, If I may venture an opinion...");

};

SpaceRobot.prototype.pilot = function() {

 alert(this.name + " says Thrusters? Are they important?");

};

var c3po = new SpaceRobot("C3PO", 1977, "Luke Skywalker", "Tatooine");

c3po.speak();

c3po.pilot();

console.log(c3po.name + " was made by " + c3po.maker);

var simon = new SpaceRobot("Simon", 2009, "Carla Diana", "Earth");

simon.makeCoffee();

simon.blinkLights();

simon.speak();

We want the SpaceRobot prototype to inherit from

the Robot prototype, so we assign a Robot instance to

the SpaceRobot constructor's prototype property.

The SpaceRobot constructor is similar to
the Robot constructor, except we have
an extra homePlanet property for the
SpaceRobot instances.

These two
methods are
added to the
prototype.

JavaScript console
C3PO was made by ObjectsRUs

Here's our output
(plus some alerts
we're not showing).

you are here 4 621

using prototypes

v

String.prototype.palindrome = function() {

 var len = this.length-1;

 for (var i = 0; i <= len; i++) {

 if (this.charAt(i) !== this.charAt(len-i)) {

 return false;

 }

 if (i === (len-i)) {

 return true;

 }

 }

 return true;

};

var phrases = ["eve", "kayak", "mom", "wow", "Not a palindrome"];

for (var i = 0; i < phrases.length; i++) {

 var phrase = phrases[i];

 if (phrase.palindrome()) {

 console.log("'" + phrase + "' is a palindrome");

 } else {

 console.log("'" + phrase + "' is NOT a palindrome");

 }

}

Your turn. Write a method, palindrome, that returns true if a string reads the
same forward and backward. Add the method to the String.prototype and test.
Here’s our solution (for one word palindromes only).

String.prototype.palindrome = function() {

 var r = this.split("").reverse().join("");

 return (r === this.valueOf());

}

Super Advanced Solution

First we get the length of the string.

Then we iterate over each character
in the string, and test to see if
the character at i is the same as
the character at len-i (i.e., the
character at the other end).

If they’re not equal we
return false because we
don’t have a palindrome.

If we get to where i is in the middle of the
string, or we get to the end of the loop, we
return true because we’ve got a palindrome.

Here are some
words to test.

We just iterate through
each word in the array
and call the palindrome
method on it. If we get
back true, then we have
a palindrome.

Here, we first split the string into an array
of letters, with each letter being one item
in the array. We then reverse the array and
join all the letters back up into a string. If

the original string’s value equals the new string,
we’ve got a palindrome. Note, we have to use
valueOf here, because this is an object, not
a string primitive like r, so if we don’t, we’d
be comparing a string to an object, and they
wouldn’t be equal even if this is a palindrom

e.

622 Chapter 13

Wouldn’t it be
dreamy if this were the end of

the book? If there were no bullet
points or puzzles or JavaScript

listings or anything else? But that’s
probably just a fantasy...

Congratulations!
You made it to the end.

Of course, there’s still an appendix.

And the index.

And the colophon.

And then there’s the website...

There’s no escape, really.

this is a new chapter 623

Appendix: leftovers

The top ten topics
 (we didn’t cover)

We’ve covered a lot of ground, and you’re almost
finished with this book. We’ll miss you, but before we let you go,

we wouldn’t feel right about sending you out into the world without a little

more preparation. We can’t possibly fit everything you’ll need to know into this

relatively small chapter. Actually, we did originally include everything you need to

know about JavaScript Programming (not already covered by the other chapters),

by reducing the type point size to .00004. It all fit, but nobody could read it. So we

threw most of it away, and kept the best bits for this Top Ten appendix.

This really is the end of the book. Except for the index, of course (a must-read!).

624 Appendix

a very brief intro to jquery

#1 jQuery
jQuery is a JavaScript library that is aimed at reducing and simplifying much of the
JavaScript code and syntax that is needed to work with the DOM and add visual
effects to your pages. jQuery is an enormously popular library that is widely used and
expandable through its plug-in model.

Now, there’s nothing you can do in jQuery that you can’t do with JavaScript (as we said,
jQuery is just a JavaScript library); however, it does have the power to reduce the amount
of code you need to write.

jQuery’s popularity speaks for itself, although it can take some getting used to if you are
new to it. Let’s check out a few things you can do in jQuery and we encourage you to
take a closer look if you think it might be for you.

For starters, remember all the window.onload functions we wrote in this book? Like:
A working knowledge of
jQuery is a good skill these
days on the job front and for
understanding others’ code. window.onload = function() {

 alert("the page is loaded!");

 }

Here’s the same thing using jQuery:

 $(document).ready(function() {

 alert("the page is loaded!");

 });

Or you can shorten this even more, to:

 $(function() {

 alert("the page is loaded!");

 });

Just like our version, when the document
is ready, invoke my function.

This is cool, but as you can see
it takes a little getting used to
at first. No worries, it becomes
second-nature fast.

So what about getting elements from the DOM? That’s where jQuery shines.
Let’s say you have an <a> element in your page with an id of “buynow” and
you want to assign a click handler to the click event on that element (like we’ve
done a few times in this book). Here’s how you do that:

 $(function() {

 $("#buynow").click(function() {

 alert("I want to buy now!");

 });

 });

So what's going on here? First we're setting up a function
that is called when the page is loaded.

Next we're grabbing the element with
a “buynow” id (notice jQuery uses CSS
syntax for selecting elements).

And then we're calling a jQuery method, click,
on the result to set the onclick handler.

you are here 4 625

leftovers

That’s really just the beginning; we can just as easily set the click handler on
every <a> element in the page:

 $(function() {

 $("a").click(function() {

 alert("I want to buy now!");

 });

 });

To do that, all we need to do is
use the tag name.

Compare this to the code you’d
write to do this if we were using
JavaScript without jQuery.

Or, we can do things that are much more complex:

 $(function() {

 $("#playlist > li").addClass("favorite");

 });

Like find all the elements
that are children of the element
with an id of playlist.

And then add the class “favorite"
to all the elements.

Actually this is jQuery just getting warmed up; jQuery can do things much more sophisticated than this.

There’s a whole ’nother side of jQuery that allows you to do interesting interface
transformations on your elements, like this:

$(function() {

 $("#specialoffer").click(function() {

 $(this).fadeOut(800, function() {

 $(this).fadeIn(400);

 });

 });

}); This makes the element with an id of
specialoffer fade out and then fade back
in at different rates.

As you can see, there’s a lot you can do with jQuery, and we haven’t even talked about how
we can use jQuery to talk to web services, or all the plug-ins that work with jQuery. If you’re
interested, the best thing you can do is point your browser to http://jquery.com/ and check
out the tutorials and documentation there.

And, check out Head First jQuery too!

http://jquery.com/

626 Appendix

the document object

#2 Doing more with the DOM
We’ve touched on some of the things you can do with the DOM in this book, but there’s
a lot more to learn. The objects that represent the document in your page—that is, the
document object, and the various element objects—are chock full of properties and
methods you can use to interact with and manipulate your page.

You already know how to use document.getElementById and
document.getElementsByTagName to get elements from the page. The document object
has these other methods you can use to get elements, too:

document.getElementsByClassName

document.getElementsByName

document.querySelector

document.querySelectorAll

Pass this method the name of a class,
and you’ll get back all elements that
have that class, as a NodeList.

This method retrieves elements that
have a name attribute with a value that
matches the name you pass it.

This method takes a selector (just like a CSS selector)
and returns the first element that matches.

This method also takes a selector, but returns all the
elements that match, as a NodeList.

Here’s how you’d use document.querySelector to match a list item element with the
class “song” that’s nested in a element with the id “playlist”:

var li = document.querySelector("#playlist .song");

This says match the element with the
id playlist, and then match the first
element with the class song.

Notice how this selector is just
like one you’d write in CSS?

What if you want to add new elements to your page from your code? You can use a
combination of document object methods and element methods to do that, like this:

var newItem = document.createElement("li");

newItem.innerHTML = "Your Random Heart";

var ul = document.getElementById("playlist");

ul.appendChild(newItem);

There’s a lot more you can do with the DOM using JavaScript. For a good
introduction, check out Head First HTML5 Programming.

ul

li li

First, we create a new
element, and set its content
to a string.

Then we get the element we want to add the new to (as a child element), and
append the to the .

you are here 4 627

leftovers

#3 The Window Object
You’ve heard of the DOM, but you should know there’s also a BOM, or Browser Object Model. It’s
not really an official standard, but all browsers support it through the window object. You’ve seen the
window object in passing when we’ve used the window.onload property, and you’ll remember we
can assign an event handler to this property that is triggered when the browser has fully loaded a page.

You’ve also seen the window object when we’ve used the alert and prompt methods, even though
it might not have been obvious. The reason it wasn’t obvious is that window is the object that acts as
the global namespace. When you declare any kind of global variable or define a global function, it is
stored as a property in the window object. So for every call we made to alert, we could have instead
called window.alert, because it’s the same thing.

Another place you’ve used the window object without knowing it is when you’ve used the document
object to do things like get elements from the DOM with document.getElementById. The
document object is a property of window, so we could write window.document.getElementById.
But, just like with alert, we don’t have to, because window is the global object, and it is the default
object for all the properties and methods we use from it.

In addition to being the global object, and supplying the onload property and the alert and
prompt methods, the window object supplies other interesting browser-based properties and
methods. For instance, it’s common to make use of the width and height of the browser window
to tailor a web page experience to the size of the browser. You can access these values like this:

Check out the W3C documentation* for more on the window object. Here are a few common
methods and properties:

Use these properties to get the browser window’s
width and height in pixels. Note that older browsers
don’t always expose these properties.

window.close()

window.setTimeout()

window.setInterval()

window.print()

window.confirm()

window.history

window.location

This method closes the browser window.

You already know these methods;
they’re supplied by the window object.

Initiates printing the page to your printer.

This method is similar to prompt, only it gives the
user the choice of an Okay or Cancel button.

This property is an object containing the browsing history.
This property is the URL of the current page. You can also set this
property to direct the browser to load a new page.

window.innerWidth

window.innerHeight

* http://www.w3.org/html/wg/drafts/html/CR/browsers.html#the-window-object

http://www.w3.org/html/wg/drafts/html/CR/browsers.html#the-window-object

628 Appendix

the arguments object

#4 Arguments
An object named arguments is available in every function when that function is called. You
won’t ever see this object in the parameter list, but it is available nevertheless every time a
function is called, in the variable arguments.

The arguments object contains every argument passed to your function, and it can be
accessed in an array-like manner. You can use arguments to create a function that accepts
a variable number of arguments, or create a function that does different things depending
on the number of arguments passed to it. Let’s see how arguments works with this code:

function printArgs() {

 for (var i = 0; i < arguments.length; i++) {

 console.log(arguments[i]);

 }

}

printArgs("one", 2, 1+2, "four");

JavaScript console
one
2
3
four

We're not going to define any formal parameters
for now. We'll just use the arguments object.

And we can access each argument
using array notation.

Here we call printArgs with four arguments.

While arguments looks just like an array, it is not actually an array; it’s an object. It has a
length property, and you can iterate over it and access items in it using bracket notation,
but that’s where the similarity with an array ends. Also, note that you can use both
parameters and the arguments object in the same function. Let’s write one more piece of
code to see how a function with a variable number of arguments might be written:

Like an array, arguments has a length property.

function emote(kind) {

 if (kind === "silence") {

 console.log("Player sits in silence");

 } else if (kind === "says") {

 console.log("Player says: '" + arguments[1] + "'");

 }

}

emote("silence");

emote("says", "Stand back!");

We can define parameters like normal. In this case, using
a parameter helps indicate how to use this function.

If the first argument is “silence” then we don’t expect
another. If the first argument is “says”, then we use
arguments[1] to get the second argument.

JavaScript console

Player sits in silence

Player says: 'Stand back!'

you are here 4 629

leftovers

#5 Handling exceptions
JavaScript is a fairly forgiving language, but now and then things go wrong—
wrong enough that the browser can’t continue executing your code. When that
happens, your page stops working, and if you look in the console you’re likely to
see an error. Let’s take a look at an example of some code that causes an error.
Start by creating a simple HTML page with a single element in the body:

window.onload = function() {

 try {

 var message = document.getElementById("messge");

 message.innerHTML = "Here's the message!";

 } catch (error) {

 console.log("Error! " + error.message);

 }

};

window.onload = function() {
 var message = document.getElementById("messge");
 message.innerHTML = "Here's the message!";
};

JavaScript console
Uncaught TypeError: Cannot set
property 'innerHTML' of null

Now, add the following JavaScript:

<div id="message"></div>

Load the page in your browser, make sure the console is open, and
you’ll get an error. Can you see what went wrong? We mistyped the id
of the <div> element, so when your code tries to retrieve that <div>
element it fails, and the variable message is null. And you can’t access
the innerHTML property of null.

When you get an error that causes your code to stop executing like this
one does, it’s called an exception. JavaScript has a mechanism, called
try/catch, that you can use to watch for exceptions and catch them when they happen. The
idea is that if you can catch one of these exceptions, rather than your code just stopping, you
can take an alternative action (try something else, offer the user a different experience, etc.).

Try/catch
The way you use try/catch is like this: you put the code you want to try in the try block, and
then you write a catch block that contains code that will be executed in case anything goes
wrong with the code in the try block. The catch keyword is followed by parentheses that
contain a variable name (that acts a lot like a function parameter). If something goes wrong
and an exception is caught, the variable will be assigned to a value related to the exception,
often an Error object. Here’s how you use a try/catch statement:

We moved our code into a try block.

Here, we’re trying to set the
innerHTML property of message
(which is null) to a string.

If the code in the try block causes an
exception, then this line of code is executed. All we’re doing is displaying the message property of the error object in the console. Then execution continues with the line following the try/catch.

Depending on the error, you could do
something much smarter here.

We’re making an error in this code.
Can you see what we did wrong?

630 Appendix

using addeventlistener

#6 Adding event handlers with addEventListener
In this book, we used object properties to assign event handlers to events. For instance, when
we wanted to handle the load event, we assigned an event handler to the window.onload
property. And when we wanted to handle a button click, we assigned an event handler to that
button’s onclick property.

This is a convenient way of assigning event handlers. But sometimes, you might need a more
general way of assigning event handlers. For instance, if you want to assign multiple handlers
for one event type, you can’t do that if you use a property like onload. But you can with a
method named addEventListener:

window.onload = function() {
 var div = document.getElementById("clickme");
 div.addEventListener("click", handleClick, false);
};
function handleClick(e) {
 var target = e.target;;
 alert("You clicked on " + target.id);
 target.removeEventListener("click", handleClick, false);
}

window.addEventListener("load", init, false);
function init() {
 // page has loaded
}

We call addEventListener on window to register a handler for the load event.

And we pass it three
arguments: the name of the
event, “load”, as a string... ...a reference to the handler

function for the event...

...and a flag indicating if we want to bubble the event up (we’ll explain bubble in a moment).
So the init function is called
when the load event happens.

You can assign a second load event handler to window simply by calling addEventListener again,
passing a different event handler function reference as the second argument. This is handy if you
want to split your initialization code into two separate functions, but remember—you won’t know
which handler will be called first, so keep that in mind as you’re designing your code.

The third argument to addEventListener determines if the event is “bubbled up” to parent
elements. This doesn’t make a difference for the load event (because the window object is at the top
level), but if you have, say, a element nested inside a <div> element, and you click on the
 but want the <div> to receive the event, then you can set bubble to true instead of false.

It’s totally fine to mix and match using the event properties, like onload, with addEventListener.
Also, if you add an event handler with addEventListener, you can remove it later with
removeEventListener, like this:

We’re using the onload property to assign
the load event handler for window.

And using addEventListener to assign the
event handler for the <div>’s click event.

When you click the <div>, we
remove the event handler from
the div with removeEventListener.

you are here 4 631

leftovers

Event handling in IE8 and older
We’ve handled a few different kinds of events in this book—mouse clicks, load events, key
presses, and more—and hopefully you’ve been using a modern browser and the code has
worked for you. However, if you are writing a web page that handles events (and what web
page doesn’t?) and you’re concerned that some of the people in your audience may be
using versions of Internet Explorer (IE) that are version 8 or older, you need to be aware of
an issue with event handling.

Unfortunately, IE handled events differently from other browsers until IE9. You could use
properties like onclick and onload to set event handlers across all browsers, however, the
way that older IE browsers handle the event object is different. In addition, if you happen to
be using the standardized addEventListener method, IE didn’t support this method until
IE9 and later. Here are the main issues to be aware of:

 � IE8 and older browsers do support most of the “on” properties you can use to assign
event handlers.

 � IE8 and older browsers use a method named attachEvent instead of the
addEventListener method.

 � When an event is triggered and your event handler is called, instead of passing an
event object to the handler, IE8 and older store the event object in the window object.

So, if you want to be sure that your code works across all browsers, including IE8 and older
browsers, then you can manage these differences like this:

window.onload = function() {

 var div = document.getElementById("clickme");

 if (div.addEventListener) {

 div.addEventListener("click", handleClick, false);

 } else if (div.attachEvent) {

 div.attachEvent("onclick", handleClick);

 }

};

function handleClick(e) {

 var evt = e || window.event;

 var target;

 if (evt.target) {

 target = evt.target;

 } else {

 target = evt.srcElement;

 }

 alert("You clicked on " + target.id);

}

IE8 supports the onload property
for the load event so this is okay.

If you use the addEventListener
method to add an event handler,
you need to check to make sure
the method exists...

...and if it doesn’t, use the attachEvent method instead. Notice attachEvent doesn’t have a third argument, and uses “onclick” for the event name.

If the event object is passed, then you know you’re
dealing with IE9+ or another browser. Otherwise, you
have to get the event object from the window.

If the event object is the modern one, the element
that triggered the event will be in the target
property, like normal. But if this is IE8 or older, this
element will be in the srcElement property.

632 Appendix

matching strings with regular expressions

#7 Regular Expressions

The RegExp constructor

var areaCode = new RegExp(/[0-9]{3}/);

var phoneNumber = new RegExp(/^\d{3}-?\d{4}$/);

Remember this from Chair Wars back in Chapter 7?
This was Amy’s winning code.

You’ve seen the RegExp object in passing in this book—“RegExp” stands for regular
expression, which is, formally, a grammar for describing patterns in text. For instance,
using a regular expression, you could write an expression that matches all text that starts
with “t” and ends with “e” , with at least one “a” and no more than two “u”s in between.

Regular expressions can get complex fast. In fact, regular expressions can almost
seem like an alien language when you first try to read them. But you can get started
with simple regular expressions fairly quickly, and if you like them, check out a good
reference on the topic.

/ [0 - 9] { 3 } /

This says match any of the numbers in
the range 0-9. [] mean you’re specifying
a range of letters or numbers.

And this says that we want to match three of the previous character. In other words we want to match three numbers in the range 0-9.

The argument to the RegExp
constructor is the search
pattern. How do you read
these two search patterns?

/ marks the beginning of
the regular expression. / marks the end of

the regular expression.

The whole thing matches any three digit string, like “201” or “503”. " 2 0 1 "

Like this...

Let’s take a look at a couple of regular expressions. To create a regular expression,
pass a search pattern to the RegExp constructor, between two slashes, like this:

The key to understanding regular expressions is learning how to read the
search patterns. These search patterns are the most complex part of regular
expressions, so we’ll work through the two examples here, and you’ll have to
explore the rest on your own.

you are here 4 633

leftovers

var amyHome = "555-1212";

To use a regular expression, you first need a string to search:

var result = amyHome.match(phoneNumber);

Then, you match the regular expression to the string by calling
the match method on the string, and passing the regular
expression object as an argument:

Using a RegExp object

The result is an array containing any parts of the string that
matched. If the result is null, then nothing in the string matched
the regular expression:

/^\d{3}-?\d{4}$/

\d means
match any
one digit
number.

And we
want to
match
three of
them.

Next,
match
zero
or one
dashes.

^ means
match
at the
beginning of
the string.

$ means
match at
the end of
the string.

Again,
match
any one
digit
number.

And we
want to
match
four of
them.

/ marks the
beginning of
the regular
expression.

/ marks
the end of
the regular
expression.

" 5 5 5 - 1 2 1 2 "

" 5 5 5 1 2 1 2 "

The whole thing
matches a seven-
digit phone number
with or without
a dash.

or

var invalid = "5556-1212";

var result2 = invalid.match(phoneNumber);

The value in result is [“555-1212”],
because in this case, the entire string
in the variable amyHome matched.

The value in result2 is null because no part of the string in the variable invalid matched our regular expression search pattern.

Once you’ve got a regular expression, like phoneNumber, you can
just keep using it to match as many strings as you like.

634 Appendix

recursive functions

#8 Recursion
When you give a function a name it allows you to do something quite interesting: call that
function from within the function. We call this recursion, or a recursive function call.

Now why would you need such a thing? Well, some problems are inherently recursive.
Here’s one from mathematics: an algorithm to compute the Fibonacci number series. The
Fibonacci number series is:

 0, 1, 1, 2 , 3, 5, 8, 13, 21, 34, 55, 89, 144... and so on.

To compute a Fibonacci number we start by assuming:

 Fibonacci of 0 is 1

 Fibonacci of 1 is 1

and then to compute any other number in the series we simply add together the two
previous numbers in the series. So:

 Fibonacci of 2 is Fibonacci of 1 + Fibonacci of 0 = 2

 Fibonacci of 3 is Fibonacci of 2 + Fibonacci of 1 = 3

 Fibonacci of 4 is Fibonacci of 3 + Fibonacci of 2 = 5

and so on… The algorithm to compute Fibonacci numbers is inherently recursive because
you compute the next number using the results of the previous two Fibonacci numbers.

We can make a recursive function to compute Fibonacci numbers like this: to compute the
Fibonacci of the number n, we call the Fibonacci function with the argument n-1 and call
the Fibonacci function with the argument n-2, and then add the results together.

Let’s do that in code. We’ll start by handling the cases of 0 and 1:

function fibonacci(n) {

 if (n === 0) return 1;

 if (n === 1) return 1;

}

We start with a function that accepts n,
the number in the series we're after.

Then we know that if the number is either 0
or 1, we return 1. This is known as the base
case of the function, because it doesn't make
any recursive calls.

These are the base cases—that is, the cases that don’t rely on previous Fibonacci numbers to
compute—and it is usually good to write them first. From there you can think like this: “To
compute a Fibonacci number n, I return the result of adding the Fibonacci of n-1 and the
Fibonacci of n-2.

Let’s do that…

you are here 4 635

leftovers

function fibonacci(n) {

 if (n === 0) return 1;

 if (n === 1) return 1;

 return (fibonacci(n-1) + fibonacci(n-2));

}

Now if n isn’t 0 or 1, we just need to
compute the Fibonacci by adding together
the Fibonacci of n-1 and n-2.

This looks a little like magic if you’ve never seen recursion before, but this does
compute Fibonacci numbers. Let’s clean the code up a little, and test it:

function fibonacci(n) {

 if (n === 0 || n === 1) {

 return 1;

 } else {

 return (fibonacci(n-1) + fibonacci(n-2));

 }

}

for (var i = 0; i < 10; i++) {

 console.log("The fibonacci of " + i + " is " + fibonacci(i));

}

Same code, just written a little better.

JavaScript console
The fibonacci of 0 is 1
The fibonacci of 1 is 1
The fibonacci of 2 is 2
The fibonacci of 3 is 3
The fibonacci of 4 is 5
The fibonacci of 5 is 8
The fibonacci of 6 is 13
The fibonacci of 7 is 21
The fibonacci of 8 is 34
The fibonacci of 9 is 55

And some test code.

 Make sure you have a base case.
If recursive code never reaches a base
case where the computation ends, it will run forever, like an infinite loop. In other words, the function will continue calling itself over and over, consuming resources until your browser can’t take it anymore. So if you write recursive code and your page isn’t responding, figure out how to make sure you’re getting to the base case.

636 Appendix

a very brief intro to JSON

#9 JSON
Not only is JavaScript the programming language of the Web, it’s becoming a common
interchange format for storing and transmitting objects. JSON is an acronym for “JavaScript
Object Notation” and is a format that allows you to represent a JavaScript object as a string—a
string that can be stored and transmitted:

var fido = {
 name: "Fido",
 breed: "Mixed",
 weight: 38
};
var fidoString = JSON.stringify(fido);

var fidoString = '{ "name": "Fido", "breed": "Mixed", "weight": 38 }';

A JSON string.

Notice that we're using single quotes around the
JSON string. We have to use single quotes because the

string contains double quotes, so JavaScript will get

confused otherwise. This way, JavaScript knows this

is one long string that contains other strings
.

Now, the cool thing about JSON is we can take strings like this and turn them into objects. The
way we do it is with a couple of methods supplied by JavaScript JSON object: JSON.parse and
JSON.stringify. We’ll use the parse method to parse the fidoString above and turn it
into a real dog (well, a JavaScript object anyway):

Look familiar? It should.

This string looks a lo
t like

the fido object we worked

with earlier in the b
ook...

var fido = JSON.parse(fidoString);

fido

{ name: "Fido",

 breed: "Mixed",

 weight: 38 }We call the parse method
of the JSON object,
passing the string above,
and we get back...

...a real JavaScript object. We
store the reference to the
object in the variable fido.

And you can go the other way, too. If you have an object, fido, and you want to
turn it into a string, you just call the JSON.stringify method, like this:

Here, we're taking a
JavaScript object...

...and turning it into a string.

Note that the JSON format doesn’t work with methods (so you can’t include, say, a
bark method in your JSON string), but it does work with all the primitive types, as
well as objects and arrays.

Notice that we’re
using the JSON
object here. JSON is
both the name of a
string format and an
object in JavaScript.

you are here 4 637

leftovers

 637

#10 Server-side JavaScript
In this book we’ve focused on the browser and client-side programming, but
there’s a whole world of server-side programming where you can now use
your JavaScript skills. Server-side programming is typically required for the
kinds of web and cloud services you use on the Internet. If you want to
create Webville Taco’s new online order system, or you think the next big
idea is the anti-social network, you’ll need to write code that lives and
runs in the cloud (on a server on the Internet).

Node.js is the JavaScript server-side technology of choice these days,
and it includes its own runtime environment and set of libraries
(in the same way client-side JavaScript uses the browser’s libraries).
And like the browser, Node.js runs JavaScript in a single-threaded
model where only one thread of execution can happen at a time.
This leads to a programing model similar to the browser that is
based on asynchronous events and an event loop.

As an example, the method below starts up a web server listening
for incoming web requests. It takes a handler that is responsible for
handling those requests when they occur. Notice that the convention
for setting up the event handler for incoming requests is to pass an
anonymous function to the createServer method.

http.createServer(function(request, response) {

 response.writeHead(200, {"Content-Type": "text/plain"});

 response.write("Hello World");

 response.end();

}).listen(8888);

Of course, there is much more to explain and to work through to understand
how Node.js works. But, given your knowledge of objects and functions you
are well positioned to take this on. Also, explaining Node.js requires at least an
entire book of its own, but you’ll also find many online tutorials, articles and
demonstrations at http://nodejs.org.

The http.createServer Node.js
library method takes a handler
in the form of an anonymous
function as an argument.

The anonymous function is
responsible for taking care
of requests. It responds to
incoming requests by sending
back the string “Hello World”.

Client-side code executes
on the client-that is, on
your computer.

Server-side code
executes on a server on
the Internet.

reque
st

http://nodejs.org

you are here 4 639

All interior layouts were designed by Eric Freeman and Elisabeth Robson.
Kathy Sierra and Bert Bates created the look & feel of the Head First series. The book was produced using

Adobe InDesign CS5.5 and Adobe Photoshop CS5.5. The book was typeset using Uncle Stinky, Mister Frisky

(you think we’re kidding), Ann Satellite, Baskerville, Comic Sans, Myriad Pro, Skippy Sharp, Savoye LET,

Jokerman LET, Courier New and Woodrow typefaces.

Interior design and production was done exclusively on Apple Macintoshes—a Mac Pro, an iMac, a Macbook Pro,

and two MacBook Airs to be precise.

Writing locations were primarily Bainbridge Island, Washington; Austin, Texas; Port of Ness, Scotland; Seaside,

Florida.

Sonic environment during writing included BT, Daft Punk, Muse, The Fixx, Depeche Mode, Adam & the Ants,

Men without Hats, Sleep Research Lab, Dousk, Uh Huh Her, Art of Noise, deadmau5 & Kaskade, David Bowie,

Cheap Trick, The Who, Blank & Jones, Chris Isaak, Roy Orbison, Elvis, John Lennon, George Harrison, Amy

Macdonald, Schiller, Sia, Sigur Ros, Tom Waits, OMD, Phillip Glass, Muse, Eno, Krishna Das, Mike Oldfield,

Devo, Steve Roach, Beyman Brothers, Harry and the Potters, and the soundtracks for Frozen, Harry Potter,

Back to the Future and Pleasantville.

Colophon

this is the index 641

Index

Symbols
$ (dollar sign)

beginning JavaScript variable names 13
function in jQuery 624

0 (zero), as falsey value 292

&& (AND) operator 55, 62–63, 74

* (asterisk) operator, as multiplication arithmetic operator
15, 286

: (colon), separating property name and property value
179

, (comma), separating object properties 177, 179

{ } (curly braces)
enclosing object properties 177, 179
in body of function 97
in code block 17
matching in code 59
using with object literals 177, 522

. (dot notation)
accessing object properties 181, 209, 230
using with reference variables 186
using with this object 202

= (equal sign) operator, assigning values to variables using
11, 16, 275

== (equality) operator
as comparison operator 16, 55, 275–285, 311, 459
vs. === operator 289

=== (strict equality) operator
as comparison operator 55, 280–285, 311
vs. == operator 289

// (forward slashes), beginning comments in JavaScript
13

/ (forward slash) operator, as division arithmetic operator
15, 286

> (greater than) operator 16, 55, 459

>= (greater than or equal to) operator 16, 55

< (less than) operator 55, 459

<= (less than or equal to) operator 55

- (minus sign) operator
as unary operator 287
using as arithmetic operator with string and number

286–287, 312
!= (not equal to) operator 16, 55

! (NOT) operator 55

|| (OR) operator 54, 55, 62–63, 74

() (parentheses)
in calling functions 68, 430, 439
in parameters 97

+ (plus sign)
as arithmetic operator 286–287, 312
in concatenating strings 15, 133, 142, 354

-- (post-decrement operator) 146–147

++ (post-increment operator) 146–147

“ “ (quotation marks, double)
surrounding character strings in JavaScript 13
using around property name 179

; (semicolon), ending statements in JavaScript 11, 13

[] (square brackets)
accessing properties using 209
in arrays 127, 129, 550

!== (strict not equal to) operator 281

_ (underscore), beginning JavaScript variable names 13

A
action attributes 328

activities, about doing xxxiii

addEventListener method 630

alert function
communicating with users using 25–26, 42, 46
determining hits and misses in simplified Battleship

game 59–60, 76

642 Index

the index

alt attribute 256

AND (&&) operator 55, 62–63, 74

anonymous functions
about , 475–476, 482, xx–xxi
accessing properties using 509, 518
assigning to method in constructors 530–532, 557
creating 477–478, 512–513
making code tighter 479
passing functions to functions 482, 486, 514
readability of 480

API-specific events 413

applications. See also Battleship game, advanced; Battleship
game, simplified

coding JavaScript 29–35
creating interactive 319
JavaScript in 5
web pages as 9

arguments, function
about 85
identifying 91, 105, 119, 120
mixing up order of 97
objects as 192
passing 88–89, 92–94
using pass-by-value 92–93
vs. parameters 90

arguments object 628

array constructor object 549–551

array literal syntax 550

arrays
about , xiii–xv
abstracting code into functions 157–162
accessing item in 129
arranging code exercise 139, 168
Auto-O-Matic app (example) 195–197
creating

empty 151
most effective bubble solution code 164–165, 171
with values 128

Cubicle Conversation on 148–149, 170
declaring variables in 152
empty 134, 153–154, 365, 367, 549–550
for determining hits in advanced Battleship game

344–345
for hits and ship locations in advanced Battleship

game 338

for loop in 140–142, 144–145, 147, 169
indices in 129, 134, 152, 163
initializing counter 140
iterating over 138, 140
length property in 130
literals in 151–152
number of levels deep to nest objects 348
number of things in 134
order of items in 134
Phrase-o-Matic app (example) 131–133
populating playlist items using 253, 262
reusing code in 156
sparse 152
test drive 143, 147, 155
undefined values and 268
updating value in 129
value types in 134
while loop in 17–21

array sort method 457–463, 472–473

asterisk (*) operator, as multiplication arithmetic operator
15, 286

asynchronous coding
about events 383
alt attribute 256
event handlers

about 383
adding using addEventListener 630
assigning to properties 407
callbacks and 250
creating 385–386
in advanced Battleship game 358–359, 361
kinds of 252
onload 249
timerHandler 407
using setInterval function 410, 425
using setTimeout function 407–413

Event object in DOM 399–402, 423
events 404
exercise on notification of events 382, 421
interview with browser about events 403
reacting to events

about 387
adding images to image guessing game 393–397
assigning click handlers 396–397
assigning handler to onclick property 390–391,

393–398

you are here 4 643

the index

creating image guessing game 388–392, 411–414,
422, 426

exercise on 415, 427
asynchronous coding event handlers

event handlers
creating closure with 503–507

attributes
action 328
alt 256
class 255
getting with getAttribute 256
not in element 256
setting with code 254
setting with setAttribute 255

Auto-O-Matic app (example) 195–197

B
background CSS property 326

background image
cells in 322
creating HTML page 320–321

Battleship game, advanced
about , xvii–xix
cheating at 369
controller object

about 329
counting guesses and firing shot 355–356
determining end of game 356
developing parseGuess function 351–354
implementing 349–357
passing input to 360
processing player’s guess 350–354
testing 357

creating HTML page
about 320
adding CSS 324–326
background 320–321
placing hits and misses 326
table 322
using hit and miss classes 327, 375

designing game 329–330, 376
event handler to fire button 359
generating random locations for ships 362–368, 380
getting players guess 358–361

keeping track of ships 337
model object

about 329, 336
determining hits 344–345
determining if ship is sunk 346
fire method in 342
implementing 341–348
interacting with view 336
looking for hits 343
notifying view of hits or misses 347
parseGuess function asking about size of board

353
representation of ships in 338–340, 378–379
representing state of ships in 337, 377
testing 348

QA in 370–371
starting location of ships 366
testing 370
toolkit for building 319
view object

about 329
implementing 329, 331–334
interacting with model 336
notifying of hits or misses 347
testing 335

Battleship game, simplified
about 44
adding hit detection code 56–57, 77
adding HTML to link code 45–46
assigning random ship locations 66–68
checking if ship sank 57
checking users guess 54
designing 45–46
displaying stats to user 58
doing quality assurance 61, 69–70
finding errors in code 68
procedural design in 329
pseudocode

determining hits and misses 59–60, 76
determining variables using 50
implementing loop using 51
translating into JavaScript code 52
working through 47–48, 73

behavior and state, in objects 210–212, 226

block of code 17, 23

644 Index

the index

<body> element
about 4
adding code on HTML page to 32
replacing element content with innerHTML property

245
body, function

declaring variables within 97
parameters in 84–85

BOM (Browser Object Model) 627

boolean expressions
true and false values 13, 15–16, 291–293, 313
using to make decisions 22

boolean operators
being verbose in specifying conditionals using 65, 74
comparison vs. logical 71
guide to 55
writing complex statements using 62–64, 74–75

booleans
about 11, 23
as objects 296
as primitive types 266
using == operator with other types 277–278, 281

Browser Object Model (BOM) 627

browsers
conditional statements handled by 434
events 404
executing code 433
function declarations handled by 431–433, 436, 465,

483
function expressions handled by 434–436, 465
handling events 383, 403. See also handling events
loading and executing JavaScript in 3
loading code into 31
objects provided by 214
opening console 28
parsing HTML and building DOM 236, 261
recommended xxvi
running JavaScript in xxxii
setting up Event object in IE8 and older 399
setting up event objects in IE8 and older 631
tailoring size of window to web page 627

browser wars 6

built-in functions 71, 91, 119

built-in objects 548–551, 608–610

C
callbacks. See also event handlers

 250
calling (invoking) functions

about 85–86, 492–493
browsers handling function declarations and expres-

sions 431–437
exercise for 117
parentheses in 68, 430, 439
recursive functions 634–635
variables referring to functions in 436
with arguments 90, 430

call method 603–604

camel case in multi-word variable names 13

Cascading Style Sheets (CSS). See CSS (Cascading Style
Sheets)

case sensitivity in JavaScript 12

catch/try, handling exceptions using 629

cells, in table of advanced Battleship game 322

chaining 345, 348

chain of prototypes
inheritance in 592
setting up 591

characters, in JavaScript 297

character strings, quoting in JavaScript 13

charAt method 297

classes
class attribute 255
hit and miss classes for advanced Battleship game

326–327, 375
labeling set of elements with 243

classic object-oriented programming 564

clear code, writing 12

cliche method 610

click events 407, 419, 624

click handlers, assigning 396–397

close() method 627

closures
about 493, 495–497
actual environment in 502

you are here 4 645

the index

creating with event handler 503–507
exercise for creating 500, 514–515
passing function expression as argument to create 501
using to implement magic counters 498–499

Coda, as HTML editor 31

code. See also Battleship game, advanced; Battleship game,
simplified; writing JavaScript

analyzing 80, 116
browser executing 433
compiling 5
duplicating code in objects 208
finding errors in

exercise 14, 39, 203, 224
using console 68
using console.log function 25, 27

for JavaScript application 29–35
functions and reusing 83–88
guide to hygiene of 111
loading into browser 31
moving JavaScript from HTML page to file 33–34
recursive 635
refactoring 156, 159
reusing , 71, 79, xii

code block 17, 23

code file
linking external file from HTML page <body> ele-

ment 32
linking from HTML page <head> element 32

collision method 364, 368

colon (:), separating property name and property value
179

comma (,), separating object properties 177, 179

comments in JavaScript 13

comparison operators 55, 71

compiling code 5

concatenating strings 15, 133, 142, 286–287, 312, 354

concat, method 300

conditionals
as variable or string 23
being verbose in specifying 65, 74
combining using boolean operators 62–63, 74
handled by browsers 434
test in arrays 140

using boolean expressions to make decisions with 22
using in while statement 17–21

confirm method 627

console
about 214
cheating at advanced Battleship game using 370
finding errors using 68
opening browser 28

console.log function
communicating with users using 25–27, 42
displaying object in console using 185, 608

constructor object, array 549–551

constructors, object
about , 521, 525, xxi
creating 525–526, 536–538, 555, 558, 566–567
creating objects

by convention 523
with object literals 522

finding errors in code exercise 529, 556
independent properties of 546–547
naming 532
parameters names in 532
putting methods into 530–532, 557
real world 548
understanding object instances 543–545, 560
updating constructor

chain of prototypes in 591–593, 606, 619
cleaning up code 600–605
creating prototype that inherits from another pro-

totype 594–599, 620
design for 588–590

using 527, 555
using new keyword with 528, 532–535, 543, 548
vs. literals 532, 539–542, 559
workings of 528

controller object, advanced Battleship game
about 329
counting guesses and firing shot 355–356
determining end of game 356
developing parseGuess function 351–354
implementing 349–357
passing input to 360
processing player’s guess 350–354
testing 357

counter, initializing, in array 140

646 Index

the index

CSS (Cascading Style Sheets)
about 2
background property 326
creating interactive web page using 319
marking up text with 10
positioning 324–326, 328
writing 254, 263

curly braces ({ })
enclosing object properties 177, 179
in body of function 97
in code block 17
matching in code 59
using with object literals 177, 522

D
Date object 214, 548, 551

declarations, function
assigning to variables 439
evaluating code 438, 466
handled by browser 431–433, 436, 465, 483
in anonymous functions 483–485
parsing 431
vs. function expressions 431, 437

defining functions, with parameters 90

delete keyword 184

designing
simplified Battleship game game 45–46

designing, advanced Battleship game game 329–330, 376

diagrams, object 565, 570

displayHit method 331–334

displayMessage method 331–334

displayMiss method 331–334

<div> elements
giving unique id 243
positioning using CSS 324–325

document object
about 214, 240
getElementById method

accessing images using 388–392
as case sensitive 230
as document object 237
getting element with 231, 240, 247–248

getting reference to fire button in advanced Battle-
ship game 359

passing id that does not exist 245
returning null 256, 270–271
using to locate element and change its content

238–239
getElementsByClassName method 245, 626
getElementsByName method 626
getElementsByTagName method 245, 397
in DOM 235, 626
write function, communicating with users using

25–26, 42
dollar sign ($)

beginning JavaScript variable names 13
function in jQuery 624

DOM (Document Object Model)
about , xv
accessing images in 389–390
changing 244
communicating with users using 25–26, 42
creating 234–235
creating, adding, or removing elements getting 258
document object in 235, 626
DOM structure as tree 235
elements grabbed from 241
Event object in 399–402, 423
events 413
getting element by id from 245
getting elements from, using jQuery 624
interaction of JavaScript with 233
NodeList in 397
parsing HTML and building 236, 261
setting attributes

with code 254
with setAttribute method 255, 333

updating 247–248
with secret message 246

“Don’t Repeat Yourself ” (DRY) 603

dot notation (.)
accessing object properties 181, 209, 230
using with reference variables 186
using with this object 202

do while loop 364, 373

dragstart event 419

Dreamweaver, as HTML editor 31

you are here 4 647

the index

drop event 419

DRY (“Don’t Repeat Yourself ”) 603

E
ECMAScript 5 6

element objects
about 231, 245
returning list of 397

elements. See also getElementById method
accessing with getElementById 238, 240
attribute does not exist in 256
classes used to label set of 243
getting by id from DOM 245
getting, creating, adding, or removing 258
grabbed from DOM 241
identifying elements 243
labeling with classes set of 243
target set to 398–399, 401
using CSS to position 324–326

else if statements
making decisions using 22–23
writing 56

else statements, using as catch-all with if/else statements
23

empty arrays 134, 153–154, 365, 367, 549–550

encapsulation 200

equal sign (=) operator, assigning values to variables using
11, 16, 275

equality (==) operator
as comparison operator 16, 55, 275–285, 311, 459
vs. === operator 289

strict equality (===) operator
as comparison operator 55, 280–285, 311
vs. == operator 289

Error object 551, 629

errors in code, finding
exercise 14, 39, 203, 224
finding errors using console 68
handling exceptions 629
using console.log function 25, 27

event handlers
about 384
adding using addEventListener 630

assigning to properties 407
asynchronous coding

assigning to properties 407
callbacks and 250
creating 385–386
in advanced Battleship game 358–359, 361
kinds of 252
onload 249
timerHandler 407
using setInterval function 410, 425
using setTimeout function 407–413

callbacks and 250
creating 385–386
creating closure with 503–507
event objects 399–402, 423
in advanced Battleship game 358–359, 361
kinds of 252
onload 249
timerHandler 407
using setInterval function 410, 425
using setTimeout function 407–413

Event object
event handlers and 399–402, 423
for properties 401
setting up in IE8 and older browsers 399, 631

event objects
setting up in IE8 and older browsers 631

events
about 383, 419
API-specific 413
click 407, 419, 624
creating game that reacts to 388–392
DOM 413
dragstart 419
drop 419
exercise on notification of 382, 421
exercise on reacting to events 415, 427
image game and

adding images to 393–397
assigning click handlers 396–397
assigning handler to onclick property 390–391,

393–398
creating 411–414, 422, 426

interview with browser about events 403
I/O 413
keypress 419

648 Index

the index

list of 419
load 419. See also load events
mousemove 405–406, 419, 424
mouseout 419
mouseover 419
onclick property 390–391, 393–398
pause 419
queues and 404
reacting to 387
resize 419
timer 407–409
touchend 419
touchstart 419
types of 407
unload 419
using setInterval function 410, 425

example files, downloading xxxiii

exceptions, handling 629

exercises, about doing xxxiii

expressions 15–16, 40

expressions, function
assigning to variables 439
evaluating code 438, 466
handled by browser 434–436, 465
substituting 481
vs. declarations, function 431, 437

F
false (boolean value) 13

falsey and truthy values 291–293, 313

fire method, advanced Battleship game 342, 346

first class values, functions as
about 442–443
extreme JavaScript challenge 486, 508, 517
passing functions to functions 443–448, 468, 482,

486, 514
returning functions from 450–456, 470, 472
substituting function expressions 481
using array sort method 457–463, 472–473

Flash, creating dynamic web pages using 5

flowchart, for designing program 45

for/in iterator 209

for loop
in adding new ship locations in advanced Battleship

game 365, 367
in guessing location of ships in advanced Battleship

game 343
iterating arrays using 140–142, 169
redoing 147
vs. while loop 144

<form> element
action attribute in 328
adding inputs to 323
using CSS to position 325

forward slashes (//), beginning JavaScript comments 13

forward slash (/) operator, as division arithmetic operator
15, 286

free variables 495–496, 501, 516

functions
$ (dollar sign), in jQuery 624
about , 79, 88, xii
abstracting code from array for 157–162
alert

communicating with users using 25–26, 42, 46
determining hits and misses in simplified Battleship

game 59, 76
anatomy of 97
anonymous

about , 475–476, 482, xx–xxi
assigning to method in constructors 530–532, 557
brain twister involving 509, 518
creating 477–478, 512–513
making code tighter 479
passing functions to functions 482, 486, 514
readability of 480

arguments in
about 85
identifying 91, 105
mixing up order of 97
passing 88–89, 92–94
using pass-by-value 92–93
vs. parameters 90

arguments object in 628
as first class values

about 442–443
extreme JavaScript challenge 487, 508, 517

you are here 4 649

the index

passing functions to functions 443–448, 468, 482,
486, 514

returning functions from 450–456, 470, 472
substituting function expressions 481
using array sort method 457–463, 472–473

as objects 612–613
assigning to variables 439, 449, 469
as values 439–440, 467
body of

declaring variables within 97
parameters in 84–85

built-in 71, 91, 119
calling 85–86, 117
calling recursively 634–635
closures and

about 493, 495–497
actual environment in closures 502
creating closure with event handlers 503–507
exercise creating 500, 514–515
passing function expression as argument to create

501
using to implement counters 498–499

console.log
communicating with users using 25, 42
displaying object in console using 185

creating 83–87
declarations

about 430
assigning to variables 439
evaluating code 438, 466
handled by browser 431–433, 436, 465, 483
in anonymous functions 483–485
parsing 431
vs. expressions 431, 437

defining 132
exercise identifying 91, 119
expressions

assigning to variables 439
evaluating code 438, 466
handled by browser 434–436, 465
substituting 481
vs. declarations 431, 437

extreme JavaScript challenge 487, 508, 517
guide to code hygiene 111
init 249, 251, 359, 361, 369, 389–391
isNaN 273, 353

keyword 430
life span of variables 102
location in JavaScript 109
Math.floor 68, 131, 365–367
Math.random 67–68, 88, 131, 365–367
naming 97
nesting 485–486, 488–490, 494
No Dumb Questions 97, 108
onload handler 249–250, 359, 389–390
order in defining 389
parameters in

about 84, 88
assigning argument values to 85
identifying 91, 105
naming 97
none used in function 94
passing arguments to 89
vs. arguments 90

parameters vs. arguments 90
parentheses (()) in calling 68, 430, 439
passing functions to 409, 443–448, 468, 482, 486, 514
passing objects to 192–194, 198
prompt 46, 53, 55
reference

about 430, 476
action in function 491, 494
assigning 477
in calling function 491
in passing function argument to another function

486
passing 479
substituting function expressions and 481

returning functions from 450–456, 470, 472
return statement in 95–97
scope

lexical scope of variables 488–490, 494
of local and global variables 101

setInterval 410, 413, 425, 627
setTimeout 407–413, 410, 480, 501, 627
standard declaration for 430
timerHandler 407
tracing through 96
variables in

declaring inside and outside of functions 97–99
declaring local 103, 108
default value of 50

650 Index

the index

lexical scope of 488–490, 494
local vs. global 99, 106–107
naming 12–13, 100, 103, 108
nesting of 486, 488–490, 494
passing into arguments 89
reloading page and 108
scope of local and global 101
shadowing 103
var keyword in declaring 97, 99

vs methods 206
weird 94
write 25–26, 42

G
generateShipLocations method 364, 367, 369

generateShip method 364–365, 367

getAttribute method 256, 391

getDay method 548

getElementById method
accessing images using 388–392
as case sensitive 230
as document object 237
getting element with 231, 240, 247–248
getting reference to fire button in advanced Battleship

game 359
passing id that does not exist 245
returning null 256, 270–271
using to locate element and change its content

238–239
getElementsByClassName method 245, 626

getElementsByName method 626

getElementsByTagName method 245, 396, 397

getFullYear method 548

getSize method 531, 557

global variables
guide to code hygiene 111
identifying 105, 120
lexical scope of 488–490, 494
life cycle of 102
nesting affecting 486, 488–490, 494
overuse in JavaScript 108
overuse of 391
reasons for sparing use of 108

scope of 101
shadowing 104
vs. local variables 99, 106–107

greater than (>) operator 16, 55, 459

greater than or equal to (>=) operator 16, 55

guesses property, advanced Battleship game 349

H
handleFireButton function 359

handleKeyPress function 361

handling events
asynchronous coding

about 383
assigning to properties 407
creating 385–386
creating closure with 503–507
in advanced Battleship game 358–359, 361
kinds of 253
onload 249
timerHandler 407
using setInterval function 410, 425
using setTimeout function 407–413

event handlers
about 383
adding using addEventListener 630
assigning to properties 407
callbacks and 250
creating 385–386
creating closure with 503–507
in advanced Battleship game 358–359, 361
kinds of 252
onload 249
timerHandler 407
using setInterval function 410, 425
using setTimeout function 407–413

event objects 399–402, 423
exercise on notification of events 382, 383, 421
interview with browser about events 403
reacting to events

about 387
adding images to image guessing game 393–397
assigning click handlers 396–397
assigning handler to onclick property 390–391,

393–398

you are here 4 651

the index

creating image guessing game 388–392, 411–414,
422, 426

exercise on 415, 427
using setInterval function 410, 425
using setTimeout function 407–413

hasOwnProperty method 586, 607

<head> element
about 4
adding code on HTML page to 32
linking code on HTML page file from 32

Head First HTML5 Programming 413, 613, 626

Head First HTML and CSS 320, 328

history method 627

hits, in advanced Battleship game
classes for misses and 326–327, 375
determining 344–345
determining if ship is sunk 346
looking for 343
notifying view of 347

HTML
about 2
creating interactive web page using

about 319–320
adding CSS 324–326
background 320–321
placing hits and misses 326
player interaction 322
table 322
using hit and miss classes 327, 375

editors 31
identifying elements with ids 243
linking code in simplified Battleship game 49
marking up text with 10
parsing and building DOM from 236, 261

HTML5
standard doctype 4
using string of numbers for id attributes in 328
using with JavaScript 5

<html> element 4

HTML page
JavaScript interacting with 233
loading code into 32
with code in external file 230–232

HTML wrapper for examples xxxiv

I
id attributes

accessing elements by 238
identifying elements with 243
using string of numbers for 328

identity equality operator 284. See also strict equality
(===) operator

IE8 (Internet Explorer 8)
setting up event objects in browsers older than 399,

631
if/else statements

making decisions using 23
writing 56

if statement, making decisions using 22

image guessing game
adding images to

about 393–397
assigning click handlers 396–397
assigning handler to onclick property 390–391,

393–398
creating 388–392, 411–414, 422, 426

indexOf method 298, 343, 345, 352, 368, 610

indices, in arrays 129, 134, 152, 163

infinite loop 55

Infinity (-infinity), JavaScript 274

inheritance
extending built-in object 610
in chain of prototypes 592–593, 619
in objects 569–572
of prototype from another prototype 594–599, 606,

620
overriding built-in behavior 608–609

init function 249, 251, 359, 361, 369, 389–391, 630

innerHeight property 627

innerHTML property
about 245
changing DOM using 244
replacing element content in <body> element with

245
setting text using 331
using to change element content 239, 241–242,

247–248

652 Index

the index

innerWidth property 627

<input> elements
adding to <form> 323
using CSS to style 325

instanceof operator 305, 315, 543, 547

interface transformations on elements, using jQuery 625

Internet Explorer 8 (IE8)
setting up event objects in browsers older than 399,

631
interpreted languages 5

in variables 186–187

invoking (calling) functions
about 85–86, 117, 492–493
browsers handling function declarations and expres-

sions 431–437
exercise for 117
parentheses (()) in 68, 430, 439
recursive functions 634–635
variables referring to functions in 436
with arguments 90, 430

I/O events 413

isNaN function 273, 353

isSunk method, advanced Battleship game 346

J
Java

introduction of 6
vs. JavaScript 5

Java, classic object-oriented programming 564

JavaScript
about , 1–2, x–xi
API-specific events 413
arrays 127, 132–134
case insensitivity 12
getElementById as wormhole to 237
getting on web page 4–5
grand unified theory of 612
handling exceptions 629
history of 6
importance of 5
in applications 5
Infinity in 274
interacting with DOM 233

interaction with web page through DOM 237
in web pages 2–3
jQuery 624
learning 9
node.js library 637
objects provided by 214
reserved words 12
server-side 637
syntax 13–14, 39
thinking about xxix
values in 272–274, 281, 292
vs. Java 5
writing. See writing JavaScript

JavaScript: The Definitive Guide 296

jQuery
about 624–625
online documentation and tutorials 625

JScript 6

JSON object 214, 636

K
keypress event 419

keywords 12

L
lastIndexOf, method 300

learning
JavaScript 9
tips for xxxi

learning principles xxviii

length property 297, 301, 303

length property, in arrays 130

less than (<) operator 55, 459

less than or equal to (<=) operator 55

lexical scope of variables 488, 494

life cycle of variables 102

list
adding songs to playlist with JavaScript (example)

253, 262
NodeList 397
returning element objects in 397

you are here 4 653

the index

listener 384. See also event handlers

list of event 419

lists
adding songs to playlist with JavaScript (example)

253, 262
finding all child elements of element with id of

playlist, using JQuery 625
literals

creating objects with 522
vs. constructors 532, 539–542, 559

literals, in arrays 151–152

LiveScript 6

load event
about 419
onload property

assigning handler to 385–386, 389–390, 410
in anonymous functions 476–477
setting to function 249, 359, 392, 394–395,

406–407, 422
local variables

declaring 103, 108
guide to code hygiene 111
identifying 105, 120
in methods 206
lexical scope of 488–489, 494
life cycle of 102
nesting affecting 486, 488–490, 494
scope of 101
shadowing global variable 104
vs. global variables 99, 106–107

location method 627

logical operators 55, 71

loop
do while 364, 373
for

in adding new ship locations in advanced Battle-
ship game 365, 367

in guessing location of ships in advanced Battleship
game 343

iterating arrays using 140–142, 169
redoing 147
vs. while loop 144–145

implementing using pseudocode 51
infinite 55

translating pseudocode into JavaScript code 52
using inner and outer 368
while

about 17
executing code using 18–21
vs. for loop 144–145

M
match method 300, 633

Math.floor function 68, 131, 365–367

Math object 214, 551

Math.random function 67–68, 88, 131, 365–367

metacognition xxix

methods
about 198
adding to prototypes 581–582, 584
available in JavaScript 296
designing advanced Battleship game 330–331, 376
duplicating 568
extending String prototype with 610–611, 621
in chain of prototypes 592–593, 619
putting in constructors 530–532, 557
tour of string 297–300
using this object in 202, 204–206, 219
vs. functions 206
writing 199–200, 207, 225

Microsoft, introduction of JScript 6

Mighty Gumball, Inc. 135–136, 148, 150

minus sign (-) operator
as unary operator 287
using as arithmetic operator with string and number

286–287, 312
misses, in advanced Battleship game

classes for hits and 326–327, 375
notifying view of 347

model object, advanced Battleship game
about 329, 336
determining hits 344–345
determining if ship is sunk 346
fire method in 342–343, 346
implementing 341–348
interacting with view 336
keeping track of ships 337

654 Index

the index

notifying view of hits or misses 347
parseGuess function asking about size of board 353
representation of ships in 338–340, 378–379
representing state of ships in 337, 377
testing 348

mousemove event 405–406, 419, 424

mouseout event 419

mouseover event 419

N
naming

constructors 532
functions 97
local and global variables with same name 104
properties 179
variables 12–13, 100, 103, 108

NaN (Not a Number) values 272–274, 281, 292

nesting functions 485–486, 488–490, 494

Netscape 6

new keyword, using with constructors 528, 532–535, 543,
548

node.js library 637

NodeList 397

Notepad (Windows), as text editor 31

not equal to (!=) operator 16, 55

NOT (!) operator 55

null 55, 256, 270–271, 274, 278, 292

numbers
as objects 296
as primitive types 266
comparing to strings 275–277, 281
NaN (Not a Number) values and 273–274, 281, 292
prompt function returning strings for 55
using + sign with strings and 286–287

O
Object, as object

about 551, 607
as prototype 607
overriding built-in behavior 608–609

object constructors
about , 521, 525, xxi
creating 525–526, 536–538, 555, 558, 566–567
creating objects, by convention 523
finding errors in code exercise 529, 556
independent properties of 546–547
naming 532
parameters names in 532
putting methods into 530–532, 557
real world 548
understanding object instances 543–545, 560
updating constructor

chain of prototypes in 591–593, 606, 619
cleaning up code 600–605
creating prototype that inherits from another pro-

totype 594–599, 620
design for 588–590

using 527, 555
using new keyword with 528, 532–535, 543, 548
vs. literals 532, 539–542, 559
workings of 528

object instances 543–545, 560

object models, building 3

object-oriented programming 180, 564

object prototype model
about , xxii–xxiii
better living through objects 612–613
chain of prototypes

inheritance in 592–593, 619
setting up 591

determining if properties are in instance or in proto-
type 586–587, 592, 618

duplicating methods and 568
extending String prototype with method 610–611,

621
implementing code 579, 583, 616–617
inheritance

extending built-in object 610
in chain of prototypes 592–593, 619
in objects 569–572
of prototype from another prototype 594–599,

606, 620
overriding built-in behavior 608–609

Object
about 607

you are here 4 655

the index

as prototype 607
overriding built-in behavior 608–609

object diagram exercise 574, 615
prototypes in

about 569
adding methods to 581–582, 584
changing properties in 582, 585
dynamic 582
getting 575
overriding 573, 578
setting up 575

updating constructor
chain of prototypes in 591–593, 606, 619
cleaning up code 600–605
creating prototype that inherits from another pro-

totype 594–599, 620
design for 588–590

object references 187

objects
about , 173–174, 215, xiv–xv
adding behavior to 198–201
arguments 628
array 549–551
array constructor 549–551
Auto-O-Matic app (example) 195–197
behavior 568
better living through 612–613
booleans as 296
built-in 548–551, 608
callback 250
comparing 459
console 214
controller (advanced Battleship game)

about 329
counting guesses and firing shot 355–356
determining end of game 356
developing parseGuess function 351–354
implementing 349–357
passing input to 360
processing player’s guess 350–354
testing 357

creating 177–179, 183, 185, 188–191, 220–222
creating with object literals 522, 532, 539–542, 559
Date 214, 548
diagramming 565, 570

document
about 214, 240
getElementById method as 238. See also getEle-

mentById method
in DOM 235, 626
write function, communicating with users using

25–26, 42
duplicating code in 208
element 231
equality of 288–290, 314
Error 551
Event

event handlers and 399–402, 423
for properties 401
setting up in IE8 and older browsers 399, 631

finding errors in code (exercise) 203
functions as 612–613
inheriting 569–572
iterating through properties of 209
JavaScript provided 214
JSON 214
Math 214, 551
methods 198
methods vs. functions 206
model (advanced Battleship game). See model object,

advanced Battleship game
models, building 3
No Dumb Questions 185
number of levels deep in arrays to nest 348
numbers as 296
passing to functions 192, 192–194, 198
properties in

about 175
accessing 181
adding new 182
adding or deleting at any time 184
changing 182
computing with 182
iterating through 209
undefined values and 268
values of 176, 219

putting methods into, by convention 523
RegExp 214, 551, 632–633
rules of road for creating 179
state and behavior in 210–212, 226
strings as primitives and 294–296

656 Index

the index

this
in constructors 528–529, 532
prototypes and 580
using 202
using with objects 204–206, 219

undefined values and 268
understanding object instances 543–545, 560
using null 270–271, 274
using this 202, 204–206, 219
variable declaration for 177
in variables 186
vs. primitives 187
window

about 214
creating onload event handler for 249, 402
history method 627
innerHeight property 627
innerWidth property 627
location method 627
methods and properties available for 627
onload property. See onload property
onresize property 415, 427
print method 627
setInterval method 627
setTimeout method 407–413, 627
support of BOM in 627

onclick property 390–391, 393–398, 504–507, 630

onload event handler 249, 359, 402

onload handler function 249–250, 359, 389–390

onload property
assigning handler to 385–386, 389–390, 410, 630
in anonymous functions 476–477
setting to function 249, 359, 392, 394–395, 406–407,

422
support of BOM using 627

onmousemove property 405–406, 414, 424, 426

onmouseout property 414, 426

onresize property 415, 427

OR (||) operator 54, 55, 62–63, 74

P
parameters, function

about 84, 88
assigning argument values to 85
identifying 91, 105, 119, 120
names in constructors 532
naming 97
none used in function 94
passing arguments to 89
vs. arguments 90

parentheses ()
in calling functions 68, 430, 439
in parameters 97

parseGuess function 351–354

parse method, in JSON 636

parsing function declaration 432

pass-by-values 92–93

passing arguments 88–89

passing by reference 192

passing by value 192

pause event 419

Phrase-o-Matic application (example) 131–133

playlists
in jQuery 625
populating with song titles using JavaScript array 253,

262
using document objects in 626

plus sign (+)
as arithmetic operator 286–287, 312
in concatenating strings 15, 133, 142, 354

position: absolute 324–325, 328

positioning, CSS 324–326, 328

position: relative 324, 328

post-decrement operator (--) 146–147

post-increment operator (++) 146–147

<p> (paragraph) elements
changing using JavaScript 247
innerHTML property changing 242

you are here 4 657

the index

primitive types
about 23, 266
identifying undefined values 267–268, 308
strings as objects and 294–296
vs. objects 187

print method 627

procedural design 329

processGuess method 349–350, 357

programming languages, learning 9

prompt function 46, 53, 55

properties
about 175
accessing 181
adding new 182
adding or deleting at any time 184
available in JavaScript 296
changing 182
changing in prototypes 582, 585
computing with 182
determining if in instance or in prototype 586–587,

592, 618
finding errors in code (exercise) 203
in chain of prototypes 592–593, 619
independent constructor 546–547
inheriting 571
iterating through object 209
methods vs. functions 206
naming 179
No Dumb Questions 185
objects as collections of 174
tour of string 297–300
undefined values and 268
using this object 202, 204–206, 219
values and 176, 219

prototypal inheritance 569–572

prototype model, object
about , xxii–xxiii
chain of prototypes

inheritance in 592–593, 619
setting up 591

determining if properties are in instance or in proto-
type 586–587, 592, 618

duplicating methods and 568
extending String prototype with method 610–611,

621

implementing code 579, 583, 616–617
inheritance

extending built-in object 610
in chain of prototypes 592–593, 619
in objects 569–572
of prototype from another prototype 594–599,

606, 620
overriding built-in behavior 608–609

Object
about 607
as prototype 607
overriding built-in behavior 608–609

object diagram exercise 574, 615
prototypes in

about 569
adding methods to 581–582, 584
changing properties in 582, 585
dynamic 582
getting 575
overriding 573, 578
setting up 575

updating constructor
chain of prototypes in 591–593, 606, 619
cleaning up code 600–605
creating prototype that inherits from another pro-

totype 594–599, 620
design for 588–590

pseudocode
determining hits and misses in simplified Battleship

game 59–60, 76
determining variables using 50
implementing loop using 51
translating into JavaScript code 52, 164–165, 171
working through 47–48, 73

push method 152

Q
quality assurance (QA)

about 61
doing 61, 69–70
in advanced Battleship game 370–371

querySelectorAll method 626

querySelector method 626

658 Index

the index

queues, events and 404

quotation marks, double (“ “)
surrounding character strings in JavaScript 13
using around property name 179

R
random locations for ships, generating in advanced Battle-

ship game 362–368, 380

random numbers, generating 67–68

reader as learner xxviii

recursion 634–635

refactoring code 156, 159

reference, function
about 430, 476
action in function 491, 494
assigning 477
in calling function 491
in passing function argument to another function 486
passing 479
substituting function expressions and 481

references, object 192

RegExp object 214, 551, 632

removeEventListener 630

replace, method 300

reportError method 587, 618

reserved words 12

resize event 419

return statement, function 95–97

rules of road, for creating objects 179

S
sample files xxxiv

scope, variables 101

<script> element
about 4
anatomy of 35
src attribute of 34–35

scripting languages 5

<script> tags
in <head> or <body> element of HTML page 32

opening and closing 35
semicolon (;), ending statements in JavaScript 11, 13

server-side JavaScript 637

setAttribute method 255, 333, 391

setInterval function 410, 413, 425

setInterval method 627

setTimeout function 410, 480, 501

setTimeout method 407–413, 627

shadowing variables 104

showAnswer handler 413

slashes (//), beginning JavaScript comments 13

slash (/) operator, as division arithmetic operator 15, 286

slice, method 300

sort method, array 457–463, 472

sparse Array 152

split method 299

square brackets ([])
accessing properties using 209
in arrays 127, 129, 550

src attribute, of <script> element 34–35

src property 390, 391

state and behavior, in objects 210–212, 226

statements
ending with semicolon 11, 13
variables in 11–13
writing 10

strict equality (===) operator
as comparison operator 55, 280–285, 311
vs. == operator 289

String prototype, extending with method 610–611, 621

strings
in arrays 132
as primitives and objects 294–296
as primitive types 266
comparing to numbers 275–277, 281
concatenating 15, 133, 142, 286–287, 312, 354
conditional as 23
falsey value are empty 292
operators to sort 459
prompt function returning for numbers 55
properties available in JavaScript 296

you are here 4 659

the index

secret life of 294–296
tour of methods and properties 297

substring method 299–300, 302, 304

Sun Microsystems 6

support material xxxiv

syntax, JavaScript
about 13
finding errors in 14, 39

T
<table> element

creating HTML page 322
using CSS to position 325

target 398–399, 401

<td> element 322, 325, 327–328, 333

TextEdit (Mac), as text editor 31

text editors 31

this object
in constructors 528–529, 532
prototypes and 580
using 202, 204–206, 219

timer events 407–409

timerHandler function 407–409

toLowerCase, method 300

toString method 531, 548, 557, 607–608

touchend event 419

touchstart event 419

toUpperCase, method 300

tracing flow of execution (tracing) 96

treasure map game 405–406, 424

tree, DOM structure as 235

trim, method 300

true and false (boolean values) 13, 15–16, 291–293, 313

truthy and falsey values 291–293, 313

try/catch, handling exceptions using 629

typeof operator 269, 305, 309, 315, 542

types
about , xvi–xvii
conversion 277–280

equality of object 288–290, 314
instanceof 305, 315, 543, 547
knowing 301–304
typeof exercise and 269
using == and === operators on different 275–285,

311
using arithmetic operators for conversion of 286–287,

312
using null 55, 270–271, 274, 310
values and 272–274, 281, 292

U
undefined, as default value of variables 50

undefined values
about 267–268, 308
as falsey 292
comparing to null 278
returned by functions without return statement 97
vs. null 270, 310

underscore (_), beginning variable names 13

Unicode values 281

unload event 419

users
communicating with

using alert function 25–26, 46
using console.log function 25–27
using document object model 25
using prompt function 46, 53

V
values

equality and 276
functions as 439–440, 467
functions as first class

about 442–443
extreme JavaScript challenge 487, 508, 517
passing functions to functions 443–448, 468, 482,

486, 514
returning functions from 450–456, 470, 472
substituting function expressions 481
using array sort method 457–463, 472–473

identifying undefined 267–268, 308
NaN (Not a Number) 272–274, 281, 292
null 270

660 Index

the index

object properties and 176, 219
objects 266
operators and 286
operators to sort 459
passing values to functions 92–93, 192
primitive 266
strict equality 280
strings 291–297
truthy and falsey 291–293
type conversion and 276–281
types in arrays 134
undefined 268
variables and 11

variable declaration, object 177

variables
about 11
assigning functions to 439, 449, 469
conditional as 23
declaring in arrays 152
declaring inside and outside of functions 98
declaring local 103, 108
default value of 50
finding errors in 39
free 495–496, 501, 516
global

guide to code hygiene 111
identifying 105, 120
lexical scope of 488–490, 494
nesting affecting 486, 488–490, 494
overuse of 391
scope of 101
vs. local variables 99, 106–107

guide to code hygiene 111
identifying 91, 119
in arrays 127, 129
lexical scope of 488–490, 494
local

declaring 103, 108
guide to code hygiene 111
identifying 105, 120
in methods 206
lexical scope of 488–490, 494
nesting affecting 486, 488–490, 494
scope of 101
vs. global variables 99, 106–107

naming 12–13, 100, 103, 108
objects assigned to 192

objects in 186
passing into arguments 89
referring to functions to invoke functions 436
reloading page and 108
scope of 101
setting to null 270
shadowing 104
short life of 102
undefined values and 268
using pseudocode in determining 50
var keyword in declaring 97, 99

var keyword
about 11
in declaring variables 97, 99

view object, advanced Battleship game
about 329
implementing 331–334
interacting with model 336
notifying of hits or misses 347
testing 335

W
W3C documentation website 627

web browsers
conditional statements handled by 434
events 404
executing code 433
function declarations handled by 431–433, 436, 465,

483
function expressions handled by 434–436, 465
handling events 383, 403. See also handling events
loading and executing JavaScript in 3
loading code into 31
objects provided by 214
opening console 28
parsing HTML and building DOM from it 261
recommended xxvi
running JavaScript in xxxii
setting up Event Object in IE8 and older 399
setting up event objects in IE8 and older 631
tailoring size of window to web page 627

web browser wars 6

web pages
adding code to HTML page 32
as applications 9

you are here 4 661

the index

creating dynamic 5–6
creating interactive 319
JavaScript in 2–3
JavaScript interacting with 233
tailoring size of browser window to 627
using <script> element in 4

while loop
about 17
executing code using 18–21
vs. for loop 144–145

white space in JavaScript code 13

wickedlysmart.com 640

window object
about 214
addEventListener method 630
confirm method 627
creating onload event handler for 249, 359, 402
history method 627
innerHeight property 627
innerWidth property 627
location method 627
methods and properties available for 627
onload property

assigning handler to 385–386, 389–390, 410, 630
in anonymous functions 476–477
setting to function 249, 359, 392, 394–395,

406–407, 422
support of BOM using 627

onresize property 415, 427
print method 627
setInterval method 627
setTimeout function 407–413
setTimeout method 627
support of BOM in 627

write function 25–26, 42

writing JavaScript. See also Battleship game, advanced;
Battleship game, simplified; code

about 3, 7–8
analyzing code 80–81, 116
being verbose in specifying conditionals 65, 74
chaining 345, 348
comparing to numbers to strings 275–277, 281
doing quality assurance 61, 69–70

duplicating code in objects 208
else if statements, making decisions using 22–23
expressions in 15–16, 40
finding errors in code

exercise 14, 39, 203, 224
using console 68

flowchart for designing program 45
functions and reusing code 83–88
generating random numbers 67–68
guide to code hygiene 111
null in 256, 270–271, 274, 278
prompt function in 46, 53
pseudocode

determining hits and misses in simplified Battleship
game 59–60, 76

determining variables using 50
implementing loop using 51
translating into JavaScript code 52, 164–165, 171
working through 47–48, 73

refactoring code 156, 159
reusing code , 71, 79, xii
statements 10
undefined as default value of variables 50
using = operator, assigning values to variables using

11, 16, 275
using == operator

as comparison operator 16, 55, 275–285, 311, 459
vs. === operator 289

using === operator
as comparison operator 55, 280–285, 311
vs. == operator 289

using variables 11–13
values in 272–274, 281
while statement, executing code using 18–21

Z
zero (0), as falsey value 292

I can’t believe the book is almost over.
Before you go, you really should read the

index. It’s great stuff. And after that you’ve
always got the website. So I’m sure we’ll see

you again soon...

Don’t worry, this
isn’t goodbye.
Nor is it the end. Now that you’ve got an
amazingly solid foundation in JavaScript, it’s
time to become a master. Point your browser to
http://wickedlysmart.com/hfjs to
explore what’s next!

What’s next? So much more! Join us
at http://wickedlysmart.com/hfjs
to continue your journey.

http://wickedlysmart.com/hfjs

	Intro: How to use this book
	Who is this book for?
	We know what you're thinking.
	Metacognition: thinking about thinking
	Read Me
	Tech Reviewers
	Acknowledgments

	Chapter 1: Getting your feet wet
	The way JavaScript works
	How you're going to write JavaScript
	How to get JavaScript into your page
	JavaScript, you've come a long way baby...
	How to make a statement
	Variables and values
	Back away from that keyboard!
	Express yourself
	How the while loop works
	Making decisions with JavaScript
	And, when you need to make LOTS of decisions
	Reach out and communicate with your user
	Who does what?
	A closer look at console.log
	Opening the console
	Coding a Serious JavaScript Application
	How do I add code to my page? (let me count the ways)
	We're going to have to separate you two
	Bullet points

	Chapter 2: Going further
	Let's build a Battleship game
	First, a high-level design
	Working through the Pseudocode
	Oh, before we go any further, don't forget the HTML!
	Writing the Simple Battleship code
	Now let's write the game logic
	Step One: setting up the loop, getting some input
	How prompt works
	Checking the user's guess
	So, do we have a hit?
	Adding the hit detection code
	Provide some post-game analysis
	And that completes the logic!
	Doing a little Quality Assurance
	Can we talk about your verbosity...
	Finishing the Simple Battleship game
	How to assign random locations
	Back to do a little more QA
	Congrats on your first true JavaScript program, and a short word about reusing code

	Chapter 3: Getting functional
	What's wrong with the code anyway?
	By the way, did we happen to mention FUNCTIONS?
	Okay, but how does it actually work?
	What can you pass to a function?
	JavaScript is pass-by-value.
	Functions can return things too
	Tracing through a function with a return statement
	Global and local variables
	Knowing the scope of your local and global variables
	The short lives of variables
	Don't forget to declare your locals!
	Webville Guide to Code Hygiene

	Chapter 4: Arrays
	Can you help Bubbles-R-Us?
	How to represent multiple values in JavaScript
	How arrays work
	How to access an array item
	How big is that array anyway?
	The Phrase-O-Matic
	Meanwhile, back at Bubbles-R-Us...
	How to iterate over an array
	But wait, there's a better way to iterate over an array
	Test drive the bubble report
	It's that time again...Can we talk about your verbosity?
	Redoing the for loop with the post-increment operator
	Creating an array from scratch (and adding to it)
	Test drive the final report
	A quick survey of the code...
	Writing the printAndGetHighScore function
	Refactoring the code using printAndGetHighScore
	Putting it all together...

	Chapter 5: A trip to Objectville
	Did someone say "Objects"?!
	Thinking about properties...
	How to create an object
	What is Object-Oriented Anyway?
	How properties work
	How does a variable hold an object? Inquiring minds want to know...
	Comparing primitives and objects
	Doing even more with objects...
	Doing some pre-qualification
	Stepping through pre-qualification
	Let's talk a little more about passing objects to functions
	Putting Fido on a diet...
	The Auto-O-Matic
	Oh Behave! Or, how to add behavior to your objects
	Improving the drive method
	Take the fiat for a test drive
	Why doesn't the drive method know about the started property?
	A test drive with "this"
	How this works
	How behavior affects state...Adding some Gas-o-line
	Now let's affect the behavior with the state
	Congrats on your first objects!
	Guess what? There are objects all around you! (and they'll make your life easier)
	Crack the Code Challenge

	Chapter 6: Getting to know the DOM
	So what does the code do?
	A quick recap
	How JavaScript really interacts with your page
	How to bake your very own DOM
	A first taste of the DOM
	Getting an element with getElementById
	What, exactly, am I getting from the DOM?
	Finding your inner HTML
	What happens when you change the DOM
	A test drive around the planets
	Don't even think about running my code until the page is fully loaded!
	You say "event handler," I say "callback"
	Why stop now? Let's take it further
	How to set an attribute with setAttribute
	More fun with attributes!
	Meanwhile, back at the solar system...
	So what else is a DOM good for anyway?

	Chapter 7: Serious types
	The truth is out there...
	Watch out, you might bump into undefined when you aren't expecting it...
	How to use null
	Dealing with NaN
	We have a confession to make
	Understanding the equality operator (otherwise known as ==)
	How equality converts is operands (sounds more dangerous than it actually is)
	How to get strict with equality
	Even more type conversions...
	How to determine if two objects are equal
	The truthy is out there...
	What JavaScript considers falsey
	The Secret Life of Strings
	How a string can look like a primitive and an object
	A five-minute tour of string methods (and properties)
	Chair Wars

	Chapter 8: Building an app
	This time, let's build a REAL Battleship game
	Stepping back...to HTML and CSS
	Creating the HTML page: the Big Picture
	Adding some more style
	Using the hit and miss classes
	How to design the game
	Implementing the View
	Implementing displayMessage
	How displayHit and displayMiss work
	Implementing displayHit and displayMiss
	Another Test Drive...
	The Model
	You're gonna need a bigger boat...and game board
	How we're going to represent the ships
	Implementing the model object
	Thinking about the fire method
	Looking for hits
	Putting that all together...
	Wait, can we talk about your verbosity again?
	Meanwhile back at the battleship...
	A view to a kill...
	Implementing the Controller
	Processing the player's guess
	Planning the code...
	Implementing parseGuess
	Meanwhile back at the controller...
	Getting a player's guess
	How to add an event handler to the Fire! button
	Passing the input to the controller
	What's left? Oh yeah, darn it, those hardcoded ships!
	How to place ships
	Generate the starting location for the new ship
	Completing the generateShip method
	Avoiding a collision!
	Two final changes
	Congrats, It's Startup Time!

	Chapter 9: Handling events
	What are events?
	What's an event handler?
	How to create your first event handler
	Test drive your event
	Getting your head around events...by creating a game
	Implementing the game
	Let's add some more images
	Now we need to assign the same event handler to each image's onclick property
	How to reuse the same handler for all the the images
	How the event object works
	Putting the event object to work
	Test drive the event object and target
	Events and queues
	Even more events
	How setTimeout works
	Finishing the image game
	Test driving the timer

	Chapter 10: Liberated functions
	The mysterious double life of the function keyword
	Function declarations versus function expressions
	Parsing the function declaration
	What's next? The browser executes the code
	Moving on...The conditional
	And finishing up...
	How functions are values too
	Did we mention functions have First Class status in JavaScript?
	Flying First Class
	Writing code to process and check passengers
	Iterating through the passengers
	Passing a function to a function
	Returning functions from functions
	Writing the flight attendant drink order code
	The flight attendant drink order code: a different approach
	Wait, we need more drinks!
	Taking orders with first class functions
	Webville Cola
	How the array sort method works
	Putting it all together
	Meanwhile back at Webville Cola
	Take sorting for a test drive

	Chapter 11: Serious functions
	Taking a look at the other side of functions...
	How to use an anonymous function
	We need to talk about your verbosity, again
	When is a function defined? It depends...
	What just happened? Why wasn't fly defined?
	How to nest functions
	How nesting affects scope
	A little review of lexical scope
	Where things get interesting with lexical scope
	Functions Revisited
	Calling a function (revisited)
	What the heck is a closure?
	Closing a function
	Using closures to implement a magic counter
	Test drive your magic counter
	Creating a closure by passing a function expression as an argument
	The closure contains the actual environment, not a copy
	Creating a closure with an event handler
	Click me! without a closure
	Test drive your button counter
	How the Click me! closure works

	Chapter 12: Creating objects
	Creating objects with object literals
	Using conventions for objects
	Introducing Object Constructors
	How to create a Constructor
	How to use a Constructor
	How constructors work
	You can put methods into constructors as well
	It's Production Time!
	Let's test drive some new cars
	Don't count out object literals just yet
	Rewiring the arguments as an object literal
	Reworking the Car constructor
	Understanding Object Instances
	Even constructed objects can have their own independent properties
	Real World Constructors
	The Array object
	Even more fun with built-in objects

	Chapter 13: Extra strength objects
	Hey, before we get started, we've got a better way to diagram our objects
	Revisiting object constructors: we're reusing code, but are we being efficient?
	Is duplicating methods really a problem?
	What are prototypes?
	Inheriting from a prototype
	How inheritance works
	Overriding the prototype
	So where do you get a prototype?
	How to set up the prototype
	Test drive the prototype with some dogs
	Give Spot his WOOF! in code
	Teaching all dogs a new trick
	Prototypes are dynamic
	A more interesting implementation of the sit method
	One more time: how the sitting property works
	How to approach the design of the show dogs
	Setting up a chain of prototypes
	How inheritance works in a prototype chain
	Creating the show dog prototype
	First, we need an object that inherits from the dog prototype
	Next, turning our dog instance into a show dog prototype
	Now it's time to fill in the prototype
	Creating a show dog instance
	Test drive the show dog
	Examining the exercise results
	A final cleanup of show dogs
	A little more cleanup
	Stepping through Dog.call
	The final test drive
	The chain doesn't end at dog
	Using inheritance to your advantage...by overriding built-in behavior
	Using inheritance to your advantage...by extending a built-in object
	Test driving the cliche machine
	Grand Unified Theory of JavaScript

	Appendix: The top ten topics (we didn't cover)
	#1: jQuery
	#2: Doing more with the DOM
	#3: The WIndow Object
	#4: Arguments
	#5: Handling exceptions
	#6: Adding event handlers with addEventListener
	#7: Regular Expressions
	#8: Recursion
	#9: JSON
	#10: Server-side JavaScript

	Colophon
	Index

